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Abstract—We investigate the effect of data noising, a reg-
ularization technique in supervised learning, in the setting of
learning contact dynamics from data. We use empirical Bayes to
characterize the optimal learned function under noised data in
closed form, and empirically show that trained neural networks
do indeed converge to this function under noised data. Using
this analysis, we show that learned functions under noised data
develop beneficial model biases in the setting of quasidynamic
contact models that i) provide smoother gradients to facilitate
better planning for gradient-based optimization, and ii) have
stabilizing properties against out-of-distribution regions that
allows them to stay away from the penetration region where
data has not been observed before.

I. INTRODUCTION

Noising data is a popular technique in supervised learning
that regularizes a function approximator from overfitting by
injecting noise in the data at training time [1], [2]. As such,
practitioners in robot learning have utilized data-noising tech-
niques for training dynamics models (i.e. system identification
[3], [4]) in the context of model-based Reinforcement Learning
(MBRL), which utilizes the learned model for planning and
control. As MBRL is highly sensitive to model bias [5],
preventing overfitting seems even more critical in this setting.

On the other hand, other works have focused on how to
learn a good model despite being subject to noise in measuring
the dynamics [6], [7]; indeed, capturing all noise in the data
might lead us to overfit to noise instead of capturing the true
dynamics. These two approaches share many of the same
mathematical tools as they must solve how to learn dynamics
under noise; despite this, the source of the noise is quite
different - artificially injected in the former, and given by
nature in the latter. At a cursory glance, these two stances seem
mutually contradictory; yet, they tell a story of how noise can
either manifest as beneficial model bias, or adversarial model
bias for the learned model.

A similar contrast arises in the study of estimation of contact
dynamics from data. One body of literature [8]–[11] investi-
gates how to recover exact, non-smooth dynamics of contact
from observation data by imposing inductive bias. They argue
against the inherent bias of popular function approximators
to discover smooth representations of contact, as it creates
non-accurate bias that does not truly model contact [8], [11].
These works focus on the extent to which the smoothing bias,
introduced either by noise or by the choice of popular function
approximators, is erroneous in the setting of contact.

In contrast, other approaches have argued that smoothing
bias is beneficial when planning through models of contact
dynamics. Motivated by randomized smoothing approaches
from non-smooth optimization [12], these works [13]–[16]
purposely inject noise in known models of contact dynamics
at runtime in order to smooth out the contact dynamics
stochastically. Many cases have been documented [15] where

smoothing out contact dynamics creates a more favorable
landscape for gradient-based optimization for planning and
control, as the landscapes of value functions for contact-rich
problems are often filled with flatness and discontinuities.

Because the first camp considers dynamic estimation, and
the second planning and control, the two camps cannot be
compared directly. This paper addresses the chasm between
these groups investigating how smoothing bias, specifically
from intentionally augmenting data with noise, affects learning
unknown contact-rich dynamics with a universal function
approximator. We find that indeed, previous approaches that
smooth known dynamics are not directly applicable because
of the peculiarities of contact systems, and the resulting
distribution of un-noised (“clean”) transition data.

One key example is as follows: MBRL might reason about
plans that cross over into the penetration region, regions from
which we have never seen data (no “real” dynamics can pene-
trate). While we might expect this to degrade performance, we
find that, in fact, MBRL can be quite successful for contact-
rich tasks [17]. What dynamics do these models learn in the
penetration region such that MBRL can still succeed? Does
noising data help regularize the behavior of dynamics in this
out-of-distribution (o.o.d.) regime?

To answer these questions, we utilize empirical Bayes
[18], [19] to characterize the optimal learned function in the
presence of data noise, and analyze the behavior of the learned
dynamics under contact-rich settings. Intriguingly, our analysis
finds that learned dynamics with noised data i) has beneficial
model bias towards smooth gradients that allows it to improve
over true known dynamics as well as learned dynamics without
noise, and ii) has stabilizing properties against o.o.d. regions
for quasidynamic models that allow it to recover back from
penetration regions. We hope that our contribution adds a
valuable perspective in the role of noise for learning models
of contact dynamics, and informs practitioners in MBRL of
the effect of their training decisions.

II. PRELIMINARIES

We first introduce some relevant concepts for our analysis.
In order to simplify the exposition, we deal first with the
function setting with f : Rn → Rm, and introduce the
dynamics setting with states and inputs in Sec. IV.

A. Empirical Risk Minimization
Consider a typical function learning setting, where we aim

to approximate an unknown function f : Rn → Rm with
access to some dataset D = {(xi, f(xi)}. Denoting p̂(x;D)
as the empirical distribution corresponding to the dataset
D, empirical risk minimization aims to solve the following
problem for approximating f ,

min
g

Ex∼p̂(x;D)

[
∥g(x)− f(x)∥2

]
. (1)



Note that the optimal appoximator g∗ is not unique, as long
as it satisfies g(xi) = f(xi) for all xi.

B. Randomized Smoothing

Given some function f , randomized smoothing randomly
perturbs the domain of the function according to the dis-
tribution pσ(x̃|x), which is often set as a Gaussian kernel
pσ(x̃|x) = N (x̃;x, σ2I), and averages the values to define
a new smoothed function.

Definition 1 (Randomized Smoothing). Given some function
f , its randomized smoothed function fσ is defined as

fσ(x) := Ex̃∼pσ(x̃|x)f(x̃)

= Ew∼N (w;0,σ2I)f(x+ w),
(2)

where we denote w as the noise injected noise w = x̃ − x,
which is drawn from a zero-mean Gaussian with variance σ2I.
Note that fσ can be understood as a convolution between f
and a Gaussian kernel; as a result, fσ is smooth even if f is
non-smooth or non-Lipschitz [13].

C. Data Noising

Given x ∼ p̂(x;D) and its corresponding data (x, f(x)),
data noising creates a fake data pair (x̃; f(x)) with x̃ = x +
w, where w is drawn from some Gaussian noise. Thus, the
function approximator is forced to regress g(x̃) against f(x),
with g being the function approximator. The risk minimization
under noised data is written as

min
g

Ex∼p̂(x;D)Ex̃∼pσ(x̃|x)
[
∥g(x̃)− f(x)∥2

]
,

=min
g

Ex∼p̂(x;D)Ew∼N (w;0,σ2I)

[
∥g(x+ w)− f(x)∥2

]
.

(3)

III. HOW DATA AUGMENTATION AFFECTS LEARNING

In this section, we review the standard empirical Bayes [18]
characterizations of the optimal solution of the data-noised
regression problem (Eq. (3)) in closed-form.

A. Randomized Smoothing

We first note that in the special case where we allow x to
be drawn from anywhere over the reals in the absence of the
empirical distribution.

Lemma 1. If p(x) is a uniform distribution over all of Rn (an
improper prior), the solution to (3) is the randomized smoothed
version of f ,

g(x) = fσ(x). (4)

Proof: Since x has a uniform improper prior, we fix x
and solve pointwise for the best value of g. This allows us to
use rewrite (3) as

min
g

Ew∼N (w;0,σ2I)

[
∥g(x+ w)− f(x)∥2

]
=Ew∼N (w;0,σ2I)

[
∥g(x̃)− f(x̃− w)∥2

]
,

(5)

for which the minimizer is

g(x̃) = Ew∼N (w;0,σ2I)f(x̃− w) = fσ(x̃). (6)

B. Reversed Smoothing
In practice, we cannot have a uniform distribution over all

of Rn for two important reasons. First, it is impossible to
decouple the learned function g from the data distribution it
was trained on, p̂(x;D). In addition, even if we asymptotically
collect such data, the support of the data distribution cannot be
all of Rn as they must obey the non-penetration constraint for
contact dynamics. This motivates us to write a more general
solution to Eq. (3) using empirical Bayes [18].

Lemma 2 (Reversed Smoothing). The solution to Eq. (3) is
given by a smooth function [20] gσ , defined as

gσ(x̃) := Ex∼pσ(x|x̃) [f(x)] =

∫
f(x)pσ(x|x̃)dx (7)

with pσ(x|x̃) as the reversed-smoothing distribution, which is
the distribution of data x which could have been augmented
from D to create x̃,

pσ(x|x̃) =
pσ(x̃|x)p̂(x;D)

pσ(x̃;D)
. (8)

where pσ(x̃;D) :=
∫
pσ(x̃|x)p̂(x;D)dx is the perturbed em-

pirical distribution, which is a randomized-smoothed version
of the empirical distribution [21], [22].

Proof: We use the property of conditional expectation

argmingEx,y∥g(y)− f(x)∥22 = Ex∼p(x|y)[f(x)], (9)

which can be obtained by rewriting the objective as∫∫ [
∥f(x)− g(y)∥2

]
p(x, y)dxdy

=
∫ [∫ [

∥f(x)− g(y)∥2
]
p(x|y)dx

]︸ ︷︷ ︸
L(y)

p(y)dy (10)

and noting that
∫
f(x)p(x|y)dx minimizes L(y) for every y

using first-order optimality.

C. Closed-form solution with Empirical Bayes
When p(x) describes an empirical distribution, the optimal

learned function under data noising g(x̃) can be characterized
in closed-form using standard empirical Bayes [18].

Lemma 3 (Exponential-Weighted Distance Average). For an
empirical data distribution p̂(x;D), the optimal function (7)
can be written as a weighted average of f(xi) for xi ∈ D,

gσ(x̃) =

[∑
xi∈D wσ(x̃, xi)f(xi)∑

xi∈D wσ(x̃, xi)

]
, (11)

with wσ(x̃, xi) := exp
[
−∥x̃− xi∥2/2σ2

]
.

Proof: Since p̂(x;D) = 1
N

∑
xi∈D δ(xi), we can use the

shifting property of dirac-deltas to write∫
f(x)pσ(x̃|x)p̂(x;D)dx = 1

N

∑
xi∈D f(xi)pσ(x̃|xi)∫

pσ(x̃|x)p̂(x;D)dx = 1
N

∑
xi∈D pσ(x̃|xi).

(12)

The above result is obtained by simplifying pσ(x̃|xi) which
are Gaussians. Note that weights act like softmin based on
quadratic distance, with temperature parameter σ [22].



IV. CONTACT DYNAMICS UNDER DATA AUGMENTATION

We now apply the tools from Sec. III to the setting of contact
dynamics to answer the main question of the paper: how would
noising data affect learned contact dynamics?

A. Quasi-dynamic Model of Contact

For our analysis, we consider the setting of [16], [23], where
the dynamics of physical systems with contacts is discretized
by a time-stepping scheme with timestep h ∈ R>0. The
generalized positions of the system, q ∈ Rn, is divided into
actuated positions qa ∈ Rna and unactuated positions qu ∈ Rnu

such that q = (qu, qa). In addition, the input commands u are
defined as position commands to a stiffness controller that
exerts impulses λ = hKa(q

a − u), with Ka ∈ Rna×na being
the stiffness values. Given the current q, the quasidynamic
equations of motion in the frictionless case can then be written
as finding the next relative displacements δq = (δqu, δqa), as
well as contact impulses λi ∈ R3 for each possible nc contact
pairs, that satisfy the following constraints,

find δq, λi

s.t. hKa(q
a + δqa − ut) = hτ a +

∑nc

i=1 Jai(q)λi

1

h
Mu(q)δq

u = hτu +
∑nc

i=1 Jui(q)λi

0 ≤ ϕi(q) + Jn
i (q)δq ⊥ λi ≥ 0 ∀i ∈ {1 · · ·nc}.

(13)
Here, τ a, τu are external forces on the system such as gravity,
and ϕi(q) ∈ R>0 is the value of the signed-distance function.
In addition, Ji = [Jui ,Jai ] ∈ R3×n are the contact Jacobians
that describe the principle directions of the contact frame, with
Jn
i (q) ∈ R1×n being the normal component of the frame (i.e.

linearization of ϕi(q)). We refer the reader to [16] for the full
case with friction. We further note that the dynamics enforce
the non-penetration constraint by linearizing ϕi(q + δq) ≥
0, and accurately model the fact that there the regions with
ϕi(q) < 0 are never seen during training.

B. Analyzing within-distribution behavior

To verify the results of Lem. 1, we first set up a 1D system
with two bodies, one actuated and one without. Given a fixed
initial condition, the next configuration of the unactuated body
qut+1 as a function of the position command on the actuated
body u describes a ReLU-like function, as the unactuated body
will not move if not in contact, and move close to the position
command of the actuated body if it makes contact [13].

We see in Fig.1 that when we have uniformly dense data
coverage over all of ut, the Exponential Weighted Distance
Average (EWDA) gσ(x) does create a smoothing effect equiv-
alent to randomized smoothing fσ [13]. In addition, in order
to empirically verify the results of Lem. 3, we also train a
neural network with noised data, which we call hσ . In both
the sparse data regime and the dense data regime, we observe
that the trained network and the EWDA solution shows a
good match. Combining the two insights, we believe that in
the asymptotic regime, the learned dynamics will have similar
beneficial model biases as smoothed contact dynamics in the
context of gradient-based optimization [13], [16].

Fig. 1: Left: Figure for Sec. IV-B. Right: Figure for Sec. IV-C. The
first row visualizes the examples, the second row shows results in
the sparse data regime, and the third row displays results for the
dense data regime. Note that the purple dots on the left correspond
to Monte-Carlo estimation of fσ . The right does not have these as f
is not properly defined in the penetration region.

C. Analyzing out-of-distribution behavior

To study out-of-distribution behavior, we set up a simple
1D example in the absence of any actuation. In this case
the dynamics is simply the identity function qu = f(qu), as
without any actuation or external forces, the block will simply
remain still. However, we set up walls on both side of the block
that acts as a penetration region. While no data is collected in
this region, the EWDA can still be evaluated.

In the dense data regime, we find that the EWDA takes
states that are in the penetration region and moves them to
the non-penetration region at the next step. This stabilizing
behavior is consistent with our intuition, since we regress the
perturbed data back to data within the distribution. We believe
that this effect provides noised dynamics with additional
stability against going into penetrating regions during rollouts.

Finally, we study how the learned function changes in the
regime of sparse data. We find that the EWDA simply takes
the support of the data and behaves as if the walls were placed
on each side of the support. Indeed, from the given data, there
is no way to tell if the region belongs to a penetrating region,
or if it simply outside the support of data. Intriguingly, this
duality implies that the learned dynamics will try to push away
from o.o.d. regions, which might provide some benefits in
combating distribution shift in MBRL [22].

V. GRADIENT-BASED OPTIMAL CONTROL

Using insights from Sec. III, we finally ask if noising
data offers benefits in gradient-based planning through learned
contact dynamics, as injecting noise at runtime did in the
setting of planning with known physics models [13].

A. Gradient-based Single-Shooting

Given some running cost matrices Q ∈ Sn×n
+ ,R ∈ Sna×na

+

and a terminal cost matrix QT ∈ Sn×n
+ , we simultaneously

solve for a nominal trajectory x̄t and time-varying gains Kt ∈



Rna×n, such that the feedback law becomes ut = Kt(xt −
x̄t). Reparametrizing −Ktx̄t = kt allows us to rewrite ut =
Ktxt + kt, resulting in the following problem:

min
Kt,kt,xt,ut,δut

x⊤
TQTxT +

∑T−1
t=0

(
x⊤
t Qxt + δu⊤

t Rδut

)
s.t. xt+1 = f(xt, ut) ∀t ∈ {0 · · ·T − 1},

δut = ut − ut−1

ut = Ktxt + kt ∀t ∈ {0 · · ·T − 1},
(14)

where δut comes ut being position commands in [16].
Given a differentiable f , we can obtain the gradients of the

value with respect to decision variables Kt, kt using automatic
differentiation and pass it to a first-order optimizer such as
Adam [24]. We solve the optimal control problem under 5
different representations of dynamics: (i) true dynamics f , (ii)
true dynamics with randomized smoothing fσ , (iii) EWDA
under noise gσ , (iv) learned neural network (NN) without data
noising h, and (v) learned NN with data noising hσ . We per-
form this comparison on two systems of PlanarPushing,
and PlanarHand from [16], where we collect a dataset of
size 100, 000 in the non-penetrating region. We initialize from
a no-contact configuration to highlight pathologies of using
exact dynamics for gradient-based planning.
B. Results & Discussion

Our results are plotted in Fig. 2. In both cases, using
gradients from exact dynamics f does not make any progress
as the objects are not initially in contact. On the other hand,
in both cases, the randomized smoothed version fσ does the
best, which is consistent with the findings of [13].

Unlike the true dynamics f and the smoothed dynamics fσ ,
the EWDA and the NNs both need to take the empirical data
distribution into account. We find that in this setting, the NN
that was trained without noised data can be prone to the same
pathologies of exact dynamics f in the PlanarPushing
case and not able to make any progress. However, it makes
improvements in the PlanarHand example, which may
indicate that the bias of NNs to learn smooth functions might
allow it to improve over using gradients of exact dynamics f .

Our experiments nevertheless indicate that EWDA and the
NN trained with noised data, which are models that noise
the training data, show superior performance compared to the

Fig. 2: Left: Cost vs. iteration plot for planar pushing. Right: Same
plot for planar hand. The top figure illustrates initial and goal poses,
where goal is denoted with a thicker frame.

NN trained without noised data, as well as exact dynamics f ,
in both examples. We note that the EWDA performs better
than the NN trained with noise data, as it is not prone to
any approximation error. These preliminary experiment results
suggest that noising data can indeed provide beneficial model
bias in the context of gradient-based optimization for planning.
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