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Abstract— In this work, the task planning problem in
household environments is explored using linear-temporal logic
(LTL). We present the task-planner as a hierarchical controller
using two layers: 1) A discrete-space supervisory controller us-
ing LTL on semantically-abstracted states and control actions,
2) A lower-level interpreter that translates the semantic control
actions and interact with the agent’s physical-world dynamics.
We justify the need for this hierarchy, and present the model
for our framework. Finally, a household task-planning example
is validated using our framework.

I. INTRODUCTION

Robots for household services provide some of the most
challenging problems for robotics, as they need to per-
form various general tasks within dynamic environments,
cooperate with humans, and be safe to operate. Among
these various challenges, two are emphasized in household
environments: task planning, and interaction with humans.
Robots in houses will need to be equipped with sufficient
intelligence to plan complicated tasks that the human might
request, whether it be fetching something, doing laundry,
or cleaning the house. Additionally, interaction is a crucial
problem, as everyday household users are unlikely to be
equipped with the knowledge to program and understand the
robot. As a motivational example, upon receiving a high-level
command ”get a beer from the fridge”, the robot should be
able understand the semantics of the natural language, and
then plan on a sequence of actions necessary to complete the
task. This work will particularly focus on the task planning
portion of this problem.

Classical methods of task planning has been developed
since the early days of artificial intelligence research, and
have mostly relied on inference engines and formal logic
programming. These include STRIPS [1], ADL[2], PDDL
[3], and their derivatives. These languages define an initial
state, a termination criteria, action schemas and their pre- and
post-conditions, and the program handles these conditions
to come up with a feasible task planning method. PDDL
(Planning Domain Description Language) has seen excellent
success in dealing with many household problems [4,5,6].
However, it has also been criticized due to its inability to
address temporal constraints and resource constraints [7].

Recent alternatives to PDDL has been suggested from
formal software verification, by observing formal logic and
its connection to finite-automata. Most success has been seen
from Linear-Temporal Logic (LTL), which is a logic specifi-
cation able to handle temporal concepts. A great advantage
of LTL-based methods are that the methods are verifiable. By
exploiting the LTL-Automata equivalence [8], LTL formulas

can be thoroughly checked for compliance with model check-
ers [9,10]. LTL methods has been successfully demonstrated
for coarse Motion Planning [11,12], and multi-agent control
[11,13]. Another advantage of LTL-synthesized controller
lies in the fact that instead of using a linear-framework
like PDDL, automatas can be made reactive by considering
environment factors [11].

This LTL framework is later extended to address the
problem of controlling hybrid dynamical systems, where the
robot’s inherent dynamics obey continuous-state properties,
while the higher-level commands happen in discrete transi-
tions. Such problems have evolved to take into account an
agent’s dynamical model along with the LTL specifications,
enabling direct control of the agent’s dynamics that is
conformal to the given specifications. An example of such
controllers is TuLiP [14]. These problems differ in objective
from classic verification where a model is checked against
given specifications, and instead synthesize a controller given
a model and a specification.

Following such synthesis models, this work proposes a
semantic formulation of a Linear-Temporal Logic (LTL) con-
troller. In our work, we argue against controlling the agent’s
dynamics directly from LTL-synthesized specifications, and
instead highly abstract the states and control actions using
semantic labels. Combined with a semantic formulation of
formal logic, we argue that this formulation is more tractable,
efficient, and a step closer towards synthesizing high-level
controllers directly from natural language.

The rest of the article is arranged as follows. In Section
II, we discuss some limitations of current LTL-synthesized
controllers and illustrate how they are ill-posed to handle
certain classes of autonomy problems. These examples fur-
ther motivate our framework which is formulated in Section
III. Section IV contains a simple illustrative implementation
of this idea. Finally, some limitations of this method and
possible future works are mentioned in Section V.

II. MOTIVATION

A. Background and Limitations of LTL controllers

In order to address some motivation for our framework,
we mention some background and limitations of LTL-
synthesized controllers. The LTL-controller is usually syn-
thesized by combining two finite automatas: the first one
represents the agent’s dynamics as a finite transition system
(FTS), and the second one represents the LTL specifications
over a set of binary atomic propositions (AP). Combined, the
resulting synthesized controller has a convenient advantage



of coming up with a scheme guaranteed to be compliant to
both the agent’s dynamics and the formal specifications [15].

To synthesize a system dynamics model and the LTL
specification, a labeling function L : X → 2AP is applied
to the system states in order to convert them into atomic
propositions. In easier terms, this means the state-space of
the agent is discretized into different regions. This partition
process is also called state-abstraction, and is often done by
a bisumlation algorithm [16,17] to satisfy the properties of
the hybrid dynamics created by both the continuous state-
space dynamics, and the discrete dynamics created by the
specifications.

One major limitation of the LTL-synthesized controller
lies in the resulting computational complexity. By discretiz-
ing continuous space, the controller must keep a physical
representation of the world into all of its states in solving
the synthesis problem. This has a direct scalability conse-
quence that for problems that require higher resolution (near-
continuous) or operate on higher dimensions, the computa-
tion becomes intractable [18]. Such an example could be
mapping, navigation, and obstacle detection. An additional
implication is that within the synthesized FTS, one loses
access to operations and feedback directly from continuous
space (without abstraction) in the decision making process.

Another limitation is that many existing LTL methods
do not introduce the notion of optimality. This is indeed
difficult to implement in a general LTL-formulation since
various action inputs differ in what they are trying to achieve,
and it is hard to imbue them with some associated cost
or reward. For example, a motion planning problem might
only care about the total traveled distance, while exploration
problems might care more about how many moves it takes to
explore the whole map. Thus it is inevitable that the notion
of optimality must be specified within specific tasks the robot
is trying to achieve.

B. Examples in Autonomy

To illustrate these points further, we provide examples
of problems in autonomy that require a high resolution
sampling, where a LTL-controller solution may be deemed
ill-posed. Consider a cleaning (coverage) problem, where a
robot must visit all the reachable spaces with a vaccuum
cleaner. In a formal specification, it is convenient to say -
”always eventually reach all the spaces”, represented by the
following LTL specification.

ϕ :=
n∧

i=1

�♦ cn

where cn corresponds to every discretized space within the
work boundaries. The resulting controller would obey a
recurrence relation, and visit all the states repeatedly. While
this is a working solution, the first problem is that it is very
difficult to partition cn finely enough to cover all the spaces
it must visit (in this case the partitioned space would be
required to be smaller than the head of the vacuum cleaner).
The second problem is that the order that the resulting
controller decides to visit all these spaces are likely to be

far from optimal (in this case optimality can be defined as
shortest traveled distance required to cover the whole space
[19]), as by the label function, there is no way to tell which
states are physically closer to another.

Another problem is the exploration problem, where the
robot is dropped at an unknown map, and must map the
whole space efficiently. In an LTL specification, we can
solve this problem by ”if the location is unknown, reach
the location next”, or

ϕ :=
n∧

i=1

(
bn⇒© cn

)
where bi contains a boolean variable over whether or not the
space has been observed, and ci is an action variable that
tells the robot to go to the space i. Let us say that one tries
to introduce the notion of optimality by using a Maximum
Expected Information Gain strategy [20]. Then, the algorithm
is required to calculate the expected information gain of a
partitioned space by summing over the expected information
gain over its neighboring partitioned space. However, this
algorithm is likely to suffer from the fact that the partitioned
space does not have high-enough resolution to accurately
portray the quantity being calculated.

C. Towards a Hierarchical Middle-Layer

The above examples illustrate the difficulty of incorpo-
rating the full-state dynamics of a given system and syn-
thesizing it with a LTL specification, due to tractability of
dealing with high-resolution partitioned space, and lack of
optimality. One solution to this issue is to introduce a middle-
layer between the system’s dynamics and the high-level LTL
controller, that is capable of the following: 1) Relaxing the
computational load to the LTL controller by taking care of
the agent’s full-state dynamics, while indirectly abstracting
the state-space to a tractable level. 2) Solving sub-problems
of the abstracted actions optimally. The middle-layer would
have access to operations in the continuous space, and also
interpret abstracted commands from the LTL controller to
interact with the continuous-space dynamics of the agent.

To illustrate this concept more clearly, let us visit the LTL
solution to the animal herding problem in [11]. The con-
tinuous space is discretized through a simple low-resolution
partition function that ends up in the following FTS in Fig.
1.

In the synthesized controller, upon deciding a location to
reach, the robot plans the path by using a reachability al-
gorithm in the FTS. However, two aforementioned problems
arise: the abstracted space is too coarsely sampled for any
reasonable motion planning, and the path is not guaranteed
to be optimal. Thus we can leverage existing path planners
such as Probabilistic Roadmap Method (PRM) [21], which
can achieve path planning more efficiently and optimally.
Fig. 2 illustrates the obvious comparison between the paths
that the two methods might take.

For this simple case, one could argue that PRM is only
an extension of the reachability idea by adding associated
costs and running the shortest path search algorithm, and
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Fig. 1. FTS representation of discretized space map

Fig. 2. Path from a0x0 to a3x3. Green is a path that an PRM with a
reasonable resolution of sampling points might take. Blue is the path that
the FTS might take.

such a feature may be implemented into the FTS. However,
the general argument holds - for more complicated classes of
autonomy problems like exploration or coverage, it becomes
difficult and inefficient to synthesize a specification-based
controller.

The role of the middle-layer would be to abstract these var-
ious operations through a keyword, understood as a discrete
control input viewed from the LTL controller, and interpreted
to a low-level control algorithm in the middle-layer. For
instance, from the example of Fig.2, the LTL controller
would issue a command ”move to cell a3x3”, and the lower-
layer would run a PRM algorithm and communicate with
the vehicle’s low-level dynamics to achieve this goal. It is
further possible to create additional hierarchies: for instance,
there would often be a dedicated motion planner that listens
to these commands and communicate with the hardware
controller of the agent. More complicated algorithms that
inherently require access to continuous space may be en-
coded this way as well - for example, ”clean”, ”explore”,
or ”grab the handle”.

III. SEMANTIC FRAMEWORK

We extend the argument above to consider a semantic
abstraction of the environment space, and the control action.
The LTL-controller purely operates on semantically-labeled
locations and transitions, and the middle layer interprets
these semantic labels into mathematically well-defined op-
erations that communicate with the agent’s dynamics. In
simple terms, locations will be encoded into words that
have physical correspondence with real locations such as
”kitchen”, ”bedroom”, and actions will be encoded into
words with semantically corresponding meanings, such as
”Grab”,”Move to”. Such a formulation has several conceiv-
able advantages:

1) The supervisory controller is made indirect from the
actual low-level dynamics of the agent and its operat-
ing environment, and only cares about high-level logic
in a semantic level. This makes the decision process
of the controller more tractable.

2) Each subproblems that arise from a semantically-
labeled control action can be individually tackled op-
timally, subject to constraints that the subproblems
might be interested in.

3) From a human-robot interaction perspective, it is easier
to achieve better connection with natural language
since natural language inputs may be limitedly parsed
into commands and specifications for the LTL con-
troller. Such methods are discussed in [22,23]

4) This process might be closer to how humans cog-
nitively tackle task planning. Task planning happens
at a semantic level through words, symbols, images,
etc., while different subfunctions interpret the semantic
commands and process them.

We model the detailed properties of this framework below.

A. Supervisory (High-Level) Semantic Controller

1) Finite Transition System (FTS): As mentioned before,
the supervisory controller is a synthesis between two finite-
automata. One automata models the discrete-dynamics of the
system using a Finite-Transition System (FTS). In our case,
the FTS is modeled as

ΣS = (XS,U,δx)

where XS is a set of semantically-labeled states, such as
”kitchen”. U is a set of semantic-labeled control actions,
such as ”move to”, and δX(xs,u,x′s) = XS ×U×XS are
transition relations on how the states evolve over a control
input. An example might be a transition function described
as δ (’kitchen’, ’move to’, ’bedroom’) which signifies that
upon a control input ’move to’, the robot can transition from
kitchen to the bedroom.

2) Semantic Abstraction Function: In order to describe
how the semantically labeled discrete states XS are mapped
from continuous space XC, we define an abstraction function:

A : XC⇒ XS
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An important property of this function is that the function
is injective but non-surjective, meaning that a single element
in continuous coordinates XC can corresponds to multiple
elements in the semantic space XS. A simple example
would be a coordinate in the refrigerator that also belongs
to a kitchen. This differs from partition functions using
bisimulation, which guarantees bijective properties between
continuous space and the partitioned discrete space.

Potentially, this is problematic on two fronts. First, accord-
ing to this function, an agent may belong to multiple states at
once. If such an issue occurs, we define this function to map
to the smallest set such that given the current continuous
coordinate xc, we find the set xs that contains xc and has
smallest area. In R2, this may be calculated as

xs = min
(∫

X
xcdA,X = {xc|A(xc) = xs}

)
The second problem is that it becomes ambiguous

to define the inverse of this function A−1 : XS ⇒ XC
that can recover continuous coordinates from a seman-
tic element. For instance, upon receiving the transition
δ (’kitchen’, ’Move to’, ’bedroom’), we want to run a
motion-planner with initial position as kitchen, and final
state in the bedroom. However, the motion-planner will need
to know exactly where (a continuous coordinate) in the
bedroom it needs to go to. We solve this problem by arguing
that the exact coordinate does not matter as long as it can be
mapped back to the semantic location. This can be seen from
how humans tell others to go to a location using the name of
the location, and not GPS coordinates. Locations that require
more precise coordinates will have a smaller set that maps to
its name, such as ”near the Refrigerator”,”near the Dinner
Table”, etc.

Additionally, we comment that one can also leverage the
set relations between elements of XS to aid in task planning.
For instance, the robot will have to visit the kitchen first
before it can access the refrigerator, and open the second
container in the bottom, which may help it set waypoints for
its goal. This idea is explored in [24].

3) LTL Specifications and Synthesis: Another finite au-
tomata deals with a set of specifications through atomic
propositions, and is a Deterministic-Finite Automata (DFA)

ΣQ = (Q,2AP,δq,q0,Q f )

where Q is a set of automated states, AP is a set of logical
atomic propositions used, δq(q,ap ∈ 2AP,q′) =Q×2AP×Q
is a transition relation between each state, q0 an initial state,
and Q f ⊂Q a set of acceptance states. For instance, a LTL
specification may hint that if the refrigerator is open, it
should be closed. Then the state representing the refrigerator
door will behave accordingly.

The rough synthesis of these two finite automata is

ΣS⊗ΣQ = (X×Q,U,δx×δq)

where δx × δq allows a transition from (x,q)
u,ap−−→ (x′,q′)

if and only if δx(x,u,x′) and δq(q,ap,q′). While this is
illustrative for an idea behind synthesis, this method only

applies to a subset of LTL formulas called syntactically
co-safe Linear Temporal Logic (scLTL). The general LTL
formula requires translation into a Rabin-automata, which
may be synthesized in a similar way.

Additionally, we comment on the labeling function LX :
XS → 2AP. In this case it is quite straightforward to im-
plement since we already have discrete states, and the
membership in each state can be represented by an atomic
proposition.

4) Action & Object Representation: In order to represent
objects and actions, we leverage the fact that because the
actions (U) and objects (O) are semantically-represented and
therefore discrete, they can also be turned into binary atomic
propositions by similar label functions

LU : U⇒ 2AP LO : O⇒ 2AP

Thus, one can simply take these atomic propositions and
synthesize them into LTL specifications.

One can also argue whether or not it is necessary to record
not only the binary detection of objects, but also the location
of each object within the semantically-labeled space (XS). It
is possible to achieve this by keeping record of where each
object is in, and combining the two label functions LX×LO.
However, we argue against this method due to the resulting
significant increase in DFA memory by |XS|× |O|, and also
due to the fact that the objects’ locations are highly dynamic,
with human agents within the environment. An alternative is
to use a semantic knowledge database [25,26,27] to infer a
likely place to find an object (a beer is likely to be in a
fridge), or to request input from the human.

5) Passive Transition: Finally, we mention an interesting
consequence of our framework - because the actual dynamics
of the agent is controlled by the low-level controller, there is
no guarantee that the transition will deterministically lead to
its desired state. As an example, imagine a controller issues
a command ”clean” when the robot is in the bedroom. Then
the robot moves from state-to-state (”bedroom-bathroom-
kitchen”), but this transition is now controlled by the low-
level controller, as opposed to the LTL transition function.
Thus a ’passive transition’ occurs.

To resolve such passive transitions, there are two solutions.
If we have a priori knowledge that the commanded action
will display such behavior, we can add this transition func-
tion between every two states in XS, and only look at the start
and end states of the low-level controller. This would make
sense for control inputs such as move to. Another solution
is to make a self-looped transition, and force the lower-level
command to return to its original position once the action is
terminated. This might make sense for control inputs such
as explore or clean.

B. Low-Level Action Interpreter (”The Middle Layer”)

The second component of our framework is the low-level
controller that interprets semantic command outputs from the
high-level controller u ∈ U, and interacts with the agent’s
dynamics. In other words, this layer contains a declarative
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database of functions that are required to specifically carry
out the commanded task.

1) Action Primitives: We can see that the semantic control
actions u ∈ U act like action schemas in PDDL. In our
work we label them as action primitives. We illustrate some
high-level examples of how specific commands might be
interpreted to specific actions in this database.
• Move to 〈location〉: Upon receiving a semantic loca-

tion xS ∈XS, we choose a reasonable continuous coordi-
nate such that A(xC) = xS. (For example, centroid of the
set {xC|A(xC) = xS}). Then given its initial coordinate
xC,i and goal coordinate xC, these parameters could be
passed on to a generic motion planning method. An
example of such a motion planning method is path
planned by PRM, and a closed-loop low-level motion
controller (for instance, PD control of motion based on
measurements from localization) to follow this path.

• Grab 〈object〉: Upon receiving a semantically labeled
object o ∈ O, the robot can perform visual template
matching / classification to identify this object [28], and
do a rough 3D reconstruction [29]. Then the object’s 3D
voxel coordinates and the robot’s current position can be
passed on to a grasp planner to grab the object [30,31].

• Find 〈object〉: Upon receiving a semantically labeled
object o ∈O, we can ask the robot to visually cover all
coordinates xc, and run template matching to locate the
object’s coordinates.

• Open/Close 〈container〉: this is a rather complex prob-
lem, that must be solved with access to continuous
coordinates. Once the robot finds the door and its handle
through template matching, it can utilize methods in
[32]

• Clean : This is a coverage problem, where the robot
will find the shortest path that can cover all coordinates
in continuous-space, and follow this path using a motion
controller [19]. Upon termination the robot can return
to its original location.

• Explore/Map : One may implement optimal strategies
to find the maximum expected information gain [19],
until a termination criteria is met and the robot explores
the whole map.

Notice that many of these actions cannot be broken down
further without sacrificing optimality and simplicity in their
own domains. Thus the action set U can be considered as
action primitives for a robotic agent, that the higher-level
controller has access to in order to interact with the world.
One can choose to add other basic action primitives such as
drill, run, or make a noise, or more complicated sets of
actions such as do laundry. A distinction (and a limitation)
of whether or not a fairly complicated action should be
included in the action set U can be answered in two fronts:

1) If the action requires its own notion of optimality, it
should be included in the action set.

2) If the action requires access to continuous-space, it
should be included in the action set.

Finally, we comment that individual actions may run

their own logic-synthesized controllers, which are required
to handle inherently complex and hybrid-dynamic problems
such as folding laundry, or grasping [32].

IV. EXAMPLE & IMPLEMENTATION

To illustrate our framework, we implement a semantic LTL
controller using TuLiP [14], and simulate a household envi-
ronment with few relevant locations and objects. For the sake
of convenience, heavy robotic tasks such as manipulation and
grasping is left out, and the robot is abstracted to be able
to do such complex activities as long as it is in its action-
primitive set U. The household environment is illustrated in
Fig.3, with door elements and obstacles such as sofa, bed,
and TV.

Fig. 3. Household environment used for the example. The bedroom is
colored in red, kitchen in green, and the refrigerator in yellow.

The performance of the semantic LTL controller is dis-
played with a corresponding physical-world movement, upon
given a task ”Bring a beer from the fridge”. Upon success-
ful execution of this task, the robot is expected to figure out
the required following steps in Algorithm 1.

Algorithm 1 Answer to: Bring a beer from the fridge
1: Start at the bedroom
2: Open the bedroom door
3: Go to the Kitchen
4: Go to the refrigerator
5: Open the refrigerator door
6: Grab the beer
7: Move to the bedroom

A. Variable Setup

To set up our simulated environment, we define the
relevant variables. In the notation of TuLiP[14], and [11],
the variables are divided into environment variables (sensor
propositions) and system variables (robot actions), where the
environment variables E is something beyond the robot’s
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control, and the system variables S are actions to be taken
by the robot. First, we define our notion of actions, places,
and objects:

U Move to, Open, Grab
XS Kitchen, Bedroom, Refrigerator
O Beer

Then we can first set up environment variables for our
objects:

E= {obeer}

where this variable will be set to true if the robot has the beer,
and false if the robot does not. Next, the system variables
are defined as below:

S= {


rbed,rkit,rstay Move to
opbed-kit,opref Open
gbeer Grab

}

The number of system variables required are directly related
to the size of U, and what it applies to in Xs and O, and
worst-case maximum size is |U|×(|Xs|+ |O|), if we assume
every action can be applied to every location and object.
The semantic FTS describing describing our state-system is
shown in Fig.4.

Fig. 4. FTS showing the states and transitions

B. LTL Specifications

Next, we describe the LTL specifications for the setup. The
specifications are divided into progression specifications and
safety specifications in TuLiP, which are subject to different
temporal operators. For our semantic LTL, we interpret the
difference between the two as follows: progression specifica-
tion portrays intent on how to interact and manipulate with
the world, while the safety specification portrays declarative
knowledge about the rules in the world. As a simple example,
the move to the kitchen from the bedroom is a progression
specification. However, the fact that you cannot pass through
it before you open the door first is a safety specification.

The implication of this interpretation is that only the
specifications describing the progression needs to be changed
upon given different task commands, because the safety spec-
ifications are only a collection of declarative knowledges that
must be obeyed at all times. Thus if we have a comprehensive

database of declarative specifications about the household
environment, the robot simply needs to re-synthesize a
new controller with new progression specifications. If the
controller is unrealizable, the robot may then report back to
the human. We discuss some possibilities of auto-generating
such progression-specifications in Section V.

For our case, the specifications are written below in words:

1) Progression Specifications

a) When not grabbing the beer, go to the refrigerator
b) When in the refrigerator and not grabbing the

beer, grab the beer
c) When grabbing the beer, come back to bedroom

2) Safety Specifications

a) If the bedroom door is closed, the agent cannot
go from the bedroom to the kitchen.

b) If the bedroom door is closed, the agent cannot
go from the kitchen to the bedroom.

c) If the refrigerator door is closed, the agent cannot
grab the beer.

In formal logic, these specifications are written as follows:

ϕ :=



∧
�♦

(
¬obeer⇒ opref

)
1.a∧

�♦
(
obeer⇒ rbed 1.b∧

�♦
(
(opref∧¬obeer)⇒ gbeer 1.c

∧
�
(
(¬opbed−kit ∧ rkit)⇒¬© rbed

)
2.a∧

�
(
(¬opbed−kit ∧ rbed)⇒¬© rkit

)
2.b∧

�
(
(¬opre f ∧ rkit)⇒¬© gbeer

)
2.c

Finally, we simulate the environment such that when the
robot grabs the beer in the refrigerator, then its sensor
variable for the beer turns true. ((gbeer∧opre f )⇒ obeer). The
synthesized controller is given in Fig. 5, but due to lack of
resolution, a more detailed image can be seen in this link.

Fig. 5. Synthesized controller with the FTS in Fig.4 and the LTL
specifications
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C. Simulation

The behavior of our synthesized controller is verified with
a simulation on the household environment in Fig.3. The
results are shown in Fig.6. In implementation, the Move
to action-primitive is carried out by a PRM algorithm, and
the samples are overlayed with the environment to illustrate
the resolution. A similar idea is implemented in [34]. Other
abstracted action primitives can be implemented as well,
creating a real-life simulation or experiment.

As shown from Fig.6, we can observe that the controller
carries out all the necessary actions as described from
Algorithm 1, showing a successful implementation of a
task planner. However, because we chose to use a PRM
algorithm for motion planning instead of labeling the whole
space, the solution is much more tractable and optimal.
The coarse sample in Fig. 5 contains 6312 samples, and in
order to achieve the same resolution by partitioning using
bisimulation properties, the resulting FTS would quickly
become intractable.

Fig. 6. Simulation-verified behavior of the synthesized controller on our
simulation environment. The doors are red when closed, and green when
open. 1. The robot opens the bedroom door and goes to the kitchen. 2.
The robot opens the refrigerator and goes near it to access it. 3. The robot
grabs the beer from the fridge and goes back to the kitchen, closing the
refrigerator door. 4. The robot opens the bedroom door again and goes
back to the bedroom.

We also comment that the semantic task planner using LTL
is more robust against dynamic environments, compared to
linear task-planning methods such as PDDL. In Fig.6, we
can see that although the robot opened the door while going
from the bedroom to kitchen in Fig.6.1, the door becomes
closed again when it comes back to Fig.6.3. If we interpret
this as a human interference within the environment, then the
controller will be able to take into accounts these dynamic
variables and adjust its action accordingly [35].

D. Simulation: Error Recovery

We argue that since the robot adjusts its actions through
sensor conditions, it can perform well in recovering from
possible errors that the robot might experience through
failure of one of the lower-level action-primitives, or due
to environment intervention. This is analogous to a feed-
back structure where the higher-level controller commands
something, and the lower-level interpreter executes it, but the
higher-level controller can get feedback by sensor variables.

Fig.7 shows such an example where the robot takes the
action to grab the beer (Fig.7.3), but fails to grab the beer
because a human has accidentally bumped into it, or the
manipulation subproblem has failed. This is simulated with
forcing the beer sensor variable to false when the robot grabs
it. The robot than alters its behavior to try to grab it again,
and reaches for the refrigerator (Fig.7.4). When it finally
succeeds (Fig.7.5), it returns to the bedroom. (Fig.7.6)

Fig. 7. Experiment to test the robot’s error recovery behavior. The doors
are red when closed, and green when open. 1. The robot opens the bedroom
door and goes to the kitchen. 2. The robot opens the refrigerator and goes
near it to access it. 3. The robot grabs the beer from the fridge and goes
back to the kitchen, closing the refrigerator door. However, it fails to catch
the beer. 4. The robot realizes this and goes back to the refrigerator. 5. The
robot grabs the beer successfully this time. 6. The robot opens the bedroom
door again and goes back to the bedroom.
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V. CONCLUSION & LIMITATIONS

In this work, a task planner was designed with two
hierarchical levels: a high-level semantic formulation of a
LTL-synthesized controller, and a lower-level interpreter that
executes these semantically-labeled states and action primi-
tives. We justified this formulation by pointing out existing
limitations of LTL-synthesized controllers that discretize the
continuous space dynamics of an agent. This framework is
formulated and tested by synthesizing a semantic controller
for household environments, subjects to some environment
constraints such as doors and objects it must manipulate.
Through the simulation we verify that the framework leads
to more optimal and tractable results, which are able to take
dynamic environments and also recover from errors.

Below, we list some limitations and potential future works
related to the framework.

A. Auto-Generating Progression LTL Specifications

We verified that the controller was able to plan the
task with environment-awareness, by interpreting LTL safety
specifications as a declarative knowledge database on how
the environment works. However, one can argue that this
did not achieve end-to-end task planning since we still
have to supply the progression specification. For this work,
how to translate ”get the beer from the fridge” to our
progression specification completely relied on heuristics. We
mention some possible future directions that one might take
to convert such natural-language commands into formal-logic
specifications.

In its current state, PDDL is better fit for purely parsing
these commands into steps compared to LTL-synthesized
controllers, and one could conceive using PDDL to generate
a sequence of specifications, given our action-primitives.
Another possibility is to attempt to convert natural-language
directly into formal logic, as described in [36]. Otherwise,
one can directly attempt to parse natural-language and ana-
lyze it, as described in [37].

B. Characterizing Temporal Reactions

One disadvantage of our framework is that compared
to synthesized controllers that discretize continuous-space
directly, we must be very careful about how and what to com-
municate between the higher-level semantic controller, and
the lower-level interpreter. We have justified our abstraction
function that maps the continuous-space coordinates to se-
mantic elements. However, in linear temporal logic, temporal
space is also highly abstracted without any quantification.

In this sense, we can consider issues of timing issues
such as synchronization and termination. For instance, how
does the high-level controller know when the lower-level
interpreter has finished its commanded action? There are
two-solutions that could be potentially explored. The first
solution is to receive some feedback from the lower-level
interpreter that it has completed its action, which would
tie the two layers temporally. For instance, a PRM motion
planner can issue a termination cue when it has finished

moving. Since we assume that the lower-level interpreter has
executed correctly, this would be the open-loop solution.

Another solution would be to continuously query sensor
variables and always verify that the lower-level interpreter
indeed did carry out what it is supposed to do, constructing a
closed-loop solution. The advantage of closed-loop solutions
are that it can continuously sense errors and initiate the
recovery behavior. One can quickly verify that the example in
Sec.IV.D was possible only because we had a sensor variable
to confirm that the robot indeed has the beer. However, this
solution leads to some interesting other questions - how fast
do we query these sensor variables, and when?

For instance, let us assume that we set the sensor query to
run at a fixed interval of low frequency, and the synthesized
controller reacted to this query at the same frequency. Then
this will not only check for error recovery, but will generate
some unnecessary behavior as well. An illustrative example
is given by the following simple FTS in Fig. 8.

Fig. 8. A Simple FTS

Let us say that the agent has two specifications:
1) If the sensor is on and the agent is at A, go to C
2) If the sensor is on and the agent is at B, go to D

In this case, how fast we query the sensor makes a difference
on where the agent ends up. This is problematic for our
framework because if the PRM is taking the robot from A
to C, but the robot has to pass through B, it will take it to
D instead. Thus we must look for a right time to get sensor
input and make the transition.

C. Semantics of Synthesized Controllers: Variables vs. States

Finally, we discuss some ambiguities in the usage of
synthesized controllers. If we consider the door example
above, multiple ways exist that we can model the door
in a controller-synthesis problem. In our work, the doors
are included as a system variable because the robot can
manipulate whether or not they are closed or open. However,
we can also place them in environment variables and define
the action ”open” instead. The final option is to augment
the semantic states [17] according to whether or not the
doors are open. In implementation, they may all result in
equivalent synthesized automatas. However, it would be
interesting to argue what makes more sense in a controller-
design perspective.
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