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1 Introduction
Rotors (propellers and motors) provide various attractive characteristics as a main method of

propulsion and control for autonomous Unmanned Aerial Vehicles (UAV). Compared to conventional
aircrafts that utilize control surfaces (ailerons, rudders), such benefits include more maneuverability
at low speeds, and ease of design / manufacturing. These unmanned rotorcrafts are popularized by
the quadrotor, a simple vehicle with four rotors that show a good degree of maneuverability. Recent
designs have also shown varieties of the quadrotors, with additional rotors attached to the body
(hexacopter, octocopter). However, these designs are mostly limited by the fact that the rotors are all
in-plane, and the vehicle’s commanded force and attitude states are coupled - thus unable to achieve
full controllability. For instance, quadrotors cannot move forward unless its pitch is tilted.

In order to overcome this limitation, several different design solutions exist. The first one is adding
more actuation to the rotors, exemplified by the variable-pitch rotor [1,2]. These can succeed in
decoupling the direction of thrust from the vehicle’s attitude state by adding more actuation. Another
solution is to use multiple rotors at different positions and orientations, then to use a simple in-plane
solution [3]. In this work, we explore the second solution by generalizing the rotorcraft’s dynamics
with any different number of rotors, with different position and orientations. Understanding the full-
state dynamics as a function of the geometrical variables allows optimizing the vehicle’s geometry for
controllability, more control authority, and etc.

In our work, the description of the dynamics is designed to be hardware-friendly, and aimed towards
low-cost hardware platforms. Some characteristics of some platforms might include the following.

1. The rotors are actuated through brushless DC (BLDC) motors

2. The motors are controlled by pulse-position modulation (PPM), commonly known as "throttle"
to individual ESC units that are available for purchase

3. The ESCs only support throttle in one direction (i.e. thrust are not reversible)

With these assumptions, we formulate a dynamic system with control input being the actual throttle
signals. Many dynamic modeling of rotorcrafts assume rotor’s angular velocity [4,5], or force and torque
[7] as control inputs. However, these models fail to describe the first-order behavior of rotor velocity or
force/torque commands, as in reality, it is not possible to command these quantities instantaneously
without considering the transient change. By incorporating the first-order motor model, we not only
describe the first-order change in angular velocity, but achieve an end-to-end dynamic system that is
more hardware-friendly.

2 Full-State Dynamics

2.1 Simplified Abstraction: Force and Moment
The goal of describing full-state dynamics of a system is to observe how a system’s state will evolve

given its current state and a control action. In most 3-D formulations, we must consider a non-linear
formulation of dynamics such that

~̇x = f(~x, ~u) (1)

where ~x is the state, and ~u is the control input. Foremost, let us consider a formulation given in terms
of an "abstracted" control action, by assuming that the body can generate force and moment in every
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direction. We will denote the combined force and moment as a screw wrench ~F = [~f ~τ ]T ∈ R6, where
force is ~f ∈ R3, and moment is ~τ ∈ R3. Throughout the notation, we will use w as the world frame,
and b as the body frame. The superscript denotes the observer frame and the subscript denotes the
frame being observed. Then, we have the following states ~x ∈ R13, and ~u ∈ R6.

~x =


~pwb
~vb

~qwb
~ωb

 ~u =

(
~f b

~τ b

)
(2)

In our state, ~pwb ∈ R3 is the position of the vehicle body frame observed from the world frame, ~vb ∈ R3

is the velocity of the vehicle body frame observed from the body frame, ~qwb ∈ R4 is the orientation of
the vehicle body frame observed from world frame, and ~ωb ∈ R3 is the angular velocity (body rate)
of the vehicle body frame observed from the body frame. If we define the body frame as the vehicle’s
center of mass (COM), the dynamics of this system can be described as

f(~x, ~u) =
d

dt


~pwb
~vb

~qwb
~ωb

 =


R(~qwb )~vb

1
m
~f b − [~ωb]×~v

b + RT (~qwb )~gw

1
2Ω(~ωb)~qwb

I−1
[
~τ b − [~ωb]×Iωb

]
 (3)

In Eq.(3), R(~qwb ) is the quaternion-derived rotation matrix in SO(3), [~ωb]× is the skew-symmetric cross-
product representation of body rate in so(3), and Ω(~ωb) is the matrix representation of the Hamiltonian
between the quaternion [qw, qx, qy, qz] and the extended angular velocity vector [0, ωx, ωy, ωz] that is
given by

Ω(~ωb) =

(
−[~ωb]× ~ωb

−(~ωb)T 0

)
(4)

Finally, I is the inertial tensor of the body evaluated around its center of mass, which is a symmetric
matrix

I =

 Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz

 (5)

For many rotorcrafts, it is possible to impose additional simplification to I by leveraging the symmetry
of the rotorcraft. For instance, a diagonal I matrix will often suffice for a quadcopter since it is
symmetric in the xz and yz plane.

2.2 Propeller Forces to Body Wrench: Geometry Parameters
Since our aim is to achieve a generic representation of the rotor’s end-to-end full-state dynamics, it

is crucial to have good parametrization of the rotor geometries, and a true representation of hardware
control inputs. First, we model how a single rotor’s angular velocity contributes to thrust and torque
from that rotor, and then observe how all of these thrusts and torques contribute to the body wrench.
In a rotorcraft with N rotors, we can first think of the angular velocity values of all the rotors,
represented as a vector

~φ =
(
φ1 φ2 ... φN

)T (6)

Given these values, it is possible to obtain the thrust and torque contributions of each rotor using a
simple aerodynamic model.

~fprop = CL~φ ◦ ~φ = CL~φ
2 ~τprop = κ~fprop + J ~̇φ (7)

In this notation, CL is the lift coefficient of the propeller, ◦ is the Hadamard (element-wise) product
operator, denoting a vector where each elements of ~φ are squared. For notational convenience we
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will denote this vector as ~φ2. In the torque term, there are two contributions - the first comes from
propeller’s drag, and it can be modeled using κ = CD/CL, the propeller-specific drag-to-lift coefficient.
The second comes from motor’s inertial torque, where J is the combined inertia of the rotor and the
propeller. We assume that the rotorcraft has the same motor and propellers and leave J as a scalar
parameter, but it may be extended to different motor combinations where CL, κ, J are vectors.

2.2.1 Fixed Rotors

Now we can consider the geometry of each rotors, represented as three matrices:

Kf =
(
~k1 ... ~kN

)
Kτ =

(
~k∗1 ... ~k∗N

)
P =

(
~p1 ... ~pN

)
(8)

where ~k1 represents the rotor normal vector in the direction of thrust, and ~k∗i represents the rotor
normal vector in the direction of torque. If the produced torque pseudovector is in the opposite
direction of the thrust, then ~k∗i = −~ki, and vice versa. In easier hardware terms, CW blades have
~ki = ~k∗i , and CCW blades have ~ki = −~k∗i . This geometrical configuration inherently requires two-fold
parametrization because of the rotor’s spinning direction, and how the rotor type (Fig. 1). Finally, ~pi
represents the position of each rotor relative to the center of mass. As a result, we have K ∈ R3×N and
P ∈ R3×N . Given these geometry parameters, the body wrench is connected to the propeller forces
and torques by

~F =

(
~f b

~τ b

)
=

(
Kf

~fprop

(P×Kf )~fprop + Kτ~τprop

)
=

(
KfCL~φ

2

(P×Kf )CL~φ
2 + KτκCL~φ

2 + KτJ ~̇φ

)
(9)

In Eq.(9), the force term is a simple vector summation of all the thrust terms. The torque term is
consisted of three components. The first term is created by thrust, the second one is gyroscopic torque
created by propeller drag, and final term is gyroscopic torque created by inertia.

Figure 1: Clockwise (CW) and Counter-Clockwise (CCW) propellers

2.2.2 Variable Pitch

In some applications, the propellers are augmented by variable pitch. This means the geometry of
the rotors can be controlled, restricted by some mechanical linkages. In most variable pitch linkages,
a single rotary linkage is used to change the orientation of the rotor. Therefore, the P matrix stays
the same, while the K matrices are now changing as a function of some commanded angle parameter.
In order to represent rotation, it is most convenient to use the axis-angle representation since it allows
for representing both the fixed axis of rotation (in this case, this is a fixed parameter), as well as the
magnitude of rotation (which is a part of the control input).

To see how the K matrix can be described as a function of axis-angles, we first define another
matrix that denotes the rotation axis of each rotary axis:

N =
(
~n1 ... ~nN

)
(10)
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Now given a vector of rotated angles ~θ = [θ1, ..., θN ], we have a matrix with every column representing
the 3-dimensional axis-angle vector.

Θ = Ndiag(~θ) =
(
θ1~n1 ... θN~nN

)
(11)

Now the K matrix can be obtained using

2.3 Motor Dynamics
In hardware, the motors are commanded by pulse-width modulation (PWM), where the applied

voltage to the motors are controlled by a duty cycle α ∈ [0, 1] (This assumes that the ESC cannot
reverse the direction of motors). Incorporating the motor model directly from duty cycle has several
advantages. The first obvious advantage is that it achieves a true end-to-end dynamical model by
using the actual control input. Mathematically, two other advantages exist. By indirectly controlling
the rotor angular velocities, we have an affine dynamics model that can deal with the motor’s inertial
torque term. Also, it allows modeling the mechanical time-response of the motor, which is a more
realistic assumption since motors cannot jump from one velocity to another. The motor dynamics are
presented as follows: the torque applied from the motor is a function of the current, by the torque
constant Kt. In turn, this current is connected to the net voltage across the motor by the motor’s
internal resistance.

J
dφ

dt
= Kt(u)i =

Kt(u)Vapplied
R

(12)

The net voltage applied is commanded voltage minus the back EMF voltage. Assuming that the torque
constant is the same with the back EMF constant, we have a first-order model.

d~φ

dt
=
Kt(u)

RJ

(
Vcc~ui −Kt

~φi

)
(13)

We make several comments about this model. First, Kt(u) is usually assumed constant in most models,
but this assumption does not often hold. In order to achieve better modeling, Kt(u) can be validated
experimentally by varying the throttle signal and observing steady-state behavior. Another comment
is that it is possible to make this model second-order by incorporating motor inductance L. However,
since L is usually small for brushless motors often used in drones, we leave out this term for now.

2.4 End-to-End Full-State Dynamics
Now we consider an end-to-end dynamics model where the control inputs are formulated directly

in terms of the ESC-commanded PWM signals, and the states are augmented with rotor velocities in
order to make the system affine. In this case we have

~x =


~pwb
~vb

~qwb
~ωb

~φ

 ~u =

α1

...
αN

 (14)

Where ~x ∈ R13+N and ~u ∈ RN , and ~u is consisted of PWM values commanded to the ESC. Given
these states and control inputs, the full dynamics of the system is modeled as

~̇x = f(~x, ~u) =
d

dt



~pwb

~vb

~qwb

~ωb

~φ


=



R(~qwb )~vb

1
mKfCL~φ

2 − [ ~ωb]×~v
b + RT (~qwb )~gw

1
2Ω(~ωb)~qwb

I−1
[
(P×Kf )CL~φ

2 + Kτ

[
Kt

R (Vcc~u−Kt
~φ)− CD~φ2

]
− [ωb]×I~ωb

]
1
J

[
Kt

R (Vcc~u−Kt
~φ)− CD~φ2

]


(15)
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Using affine notation where we can linearly separate the terms coupled with the control input ~u, we
can rewrite the dynamics as

~̇x = f(x) + g(x)~u (16)

where functions f(x) and g(x) are defined as

f(x) =



R(~qwb )~vb

1
mKfCL~φ

2 − [~ωb]×~v
b + RT (~qWb )~gw

1
2Ω(~ωb)~qwb

I−1

[
(P×Kf )CL~φ

2 + Kτ [κCL~φ
2 − K2

t

R
~φ]− [ωb]×I~ωb

]
−K

2
t

RJ
~φ


g(x) =


010×N

KtVcc

R I−1Kτ

KtVcc

RJ IN×N

 (17)

3 Obtaining Parameters
In practice, many different parameters are required for our dynamics. Some of them are purely

geometrical, while others must be measured using different techniques. All the parameters required
for the dynamics are written in Table.1

Table 1: Parameters required for Dynamics
Parameters Description Units Quantity

Inertial Parameters
m Mass of the rotorcraft kg scalar
I Inertia of rotorcraft kg ·m2 matrix

Geometrical Parameters
Kf Rotor normal vectors (positive force) None matrix
Kτ Rotor normal vectors (positive torque) None matrix
P Rotor position vectors m matrix

Aerodynamic Parameters
CL Propeller Lift Coefficient None scalar
κ CD/CL, drag-to-lift ratio None scalar

Motor Parameters
Kt Motor torque constant & back-EMF constant V · s/rad scalar
R Motor internal resistance Ω scalar
J Rotor and Propeller Inertia kg ·m2 scalar
Vcc Rail (Battery) Voltage V scalar

3.1 Inertial Parameters

3.2 Motor & Aerodynamic Parameters
Since we assume that we use the same rotors in all quadcopters, it suffices to run a single test on a

single motor-propeller configuration. In the motor equation, we impose a first-order dynamics model
such that

Jφ̇ =
Kt

R
(Vccα−Ktφ) (18)

where we know the values of α, the commanded variable. It is also trivial to measure internal motor
resistance R and rail voltage Vcc using a multimeter. (Additionally, R is usually a given parameter
from the manufacturer as well). Finally, the thrust and torques from the propeller are connected to
the angular velocity by

f = CLφ
2 τ = κCLφ

2 + Jφ̇ (19)
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The testbed for this system requires a force and torque loadcell to measure f and τ , a multimeter to
measure Vcc and R, and finally, a tachometer / rotary encoder to measure φ.

3.2.1 Steady-State

In steady-state, ω̇ = 0. Therefore, the equations simplify to

Vccu−Ktφ = 0 (20)

since we know Vcc, u, and have measurement of φ, we can obtain Kt quite easily. It is also possible
to obtain an experimental measurement of Kt(u) Additionally, CL and κ can also be easily obtained
through observing the steady-state versions of Eq.(19).

CL =
f

φ2
κ =

τ

CLφ2
(21)

Thus through a simple steady-state analysis, we can obtain the values of Kt, CL, κ.

3.2.2 Transient Fit

Finally, in order to measure J , we will need to numerically differentiate the obtained values of φ to
obtain φ̇. Then we can analyze the transient curve to calculate

J =
Kt

Rφ̇

(
Vccα−Ktφ

)
(22)

4 Simulation and Examples: Quadcopter

4.1 Quadcopter
The most successful and widely used rotorcraft is the quadcopter, with N = 4 and the four rotors

with the same force normals. In order to provide torque stability, the torque normals are alternating
in different direction. Since we have a simple matrix representation of the rotor normals and positions,
we only need to fit measure these parameters accordingly. In the quadcopter case, all the rotors point
normal to the xy plane, with two alternating signs for gyroscopic torque. Thus the Kf ,Kτ , and P
can be written as

Kf =

0 0 0 0
0 0 0 0
1 1 1 1

 Kτ =

0 0 0 0
0 0 0 0
1 −1 1 −1

 P =
1√
2

r r −r −r
r −r −r r
0 0 0 0

 (23)

A simulation is designed with some parameters obtained through methods mentioned in Section 3, and
some parameters that have just been guessed. Additionally, since this is not a control problem, we can
only verify that certain control actions will lead to certain behavior of the body frame.

4.1.1 Equal Thrust

The simplest control command we can consider is that of equal magnitude, ~u = [0.48, 0.48, 0.48, 0.48].
With this command, the quadcopter is expected to make a linear movement in the z direction. With
this control action, simulated for 50s with 100Hz, we can verify this behavior in Fig.2.

We can observe that indeed, x and y stays the same, while the z position and velocity increases. If
we observe the motor velocity term, we can indeed see the first-order behavior until it reaches steady-
state solution. The time constant is mainly decided by motor resistance R and inertia J . (With large
propellers, it is common to observe that due to this first-order behavior, controllers based on angular
velocity commands become unstable). Such first-order behavior can also be observed in the position
and velocity term. Due to the effect of gravity, the position falls for a certain time before the lift value
saturates, and the propeller goes upwards.
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Figure 2: Given u1 = u2 = u3 = u4 = 0.48, A. Position vs. time. B. Velocity vs. time. C. Motor
Velocity vs. time

In reality, there is another first-order behavior on the velocity value, since aerodynamic drag comes
into play and is a main factor in limiting the top-velocity of the rotorcraft. However, this term is ignored
for now because we assume the quadrotor moves in relatively slow-velocities, where aerodynamic drag
can be ignored.

4.1.2 Pitch Command

In order to change the pitch, we give more thrust to the front two propellers, to cause the rotorcraft
to rotate in pitch and ’flip’ backwards. Since we still want relatively less z displacement, we can keep
the magnitudes the same while having a small variation, ~u = [0.48, 0.48, 0.46, 0.46]. The pitch is mainly
dominated by torque created by the lift forces, and the resulting simulation is described in Fig.3.

Figure 3: Given u = [0.46, 0.46, 0.48, 0.48] A. Velocity vs. time. B. Orientation vs. time. C. Angular
Velocity vs. time

We can see that the angular velocity is in the y-direction, and therefore the pitch is changing. The
quaternions are converted and graphed into ZYX Euler angles for better interpretation: the Euler-
angles are a bit more complicated since it is internally rotated, but we can confirm the angular velocity
changes in the y direction. As a result, the velocity oscillates as it is defined in body-frame and is
affected by centrifugal force.

4.1.3 Yaw Command

In this example, a command of ~u = [0.48, 0.46, 0.48, 0.46] is given. By having alternating torques,
the purpose is to verify that the quadrotor changes yaw successfully by using gyroscopic torque. The
resulting figure is illustrated in Fig.4.

We can see that since we are using ZYX convention, the gyroscopic torque indeed generates a linear
increase in body angular velocity, and thus a quadratic increase in vehicle orientation.
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Figure 4: Given u = [0.48, 0.46, 0.48, 0.46] A. Position vs. time. B. Orientation vs. time. C. Angular
Velocity vs. time

5 Control Laws

5.1 Force-Torque Map-based PD Control

6 Conclusion and Future Works
In this work, the dynamics of a generic rotorcraft was formulated with a compact parametrization

of the rotor’s 3D placement. By including the motor dynamics, we successfully simulated the first-order
behavior of force and torques, and their effects on vehicle’s position and orientation. Figuring out this
dynamics is useful for the following future works.

6.1 Design Optimization
Since we know how the vehicle will behave according to the dynamics, it is now possible to optimize

the vehicle’s rotor placements according to some criteria. This can be done by keeping Kf ,Kτ , and P as
variables and employing optimization algorithms such as gradient descent, and quadratic programming.
An example is given in [3].

6.2 Vehicle Control
Since we know the dynamics of the quadrotor, we can employ control algorithms to control the

vehicle state. Many control strategies employ a simple PD control [3], where partial states are con-
trolled. For instance, if we have external position measurements, we can use control actions to have
the vehicle converge into that measurement. In this case, since we know how the full-state will evolve
according to our control action, this allows us to study the system further, including controllability
analysis based on Kf ,Kτ ,P, and reachability analysis on the state spaces.

6.3 Control Authority and Allocation
Finally, we aim to formulate control authority and allocation problems with these geometry pa-

rameters as well. Control authority is a measure of how well the vehicle can exert actions in some
direction. This is especially important for underactuated systems such as quadcopters - for instance,
a quadcopter is much more likely to be maneuverable in the z direction than it is in the x-direction.
Additionally, Control allocation deals with overactuated systems with multiple solutions to a single
control action. For instance, in an omnicopter [3], there are multiple solutions to how to get the same
force and torque. Therefore, we need to decide a good solution for full-state trajectory generation.
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