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Abstract— The aim of this project is to design, analyze, and
make an anthropomorphic arm that is controlled by linear
actuators, forming a closed-loop kinematic chain. We present
a design that is closer to workings of the human muscle
by simulating different muscles such as the deltoid, bicep,
and the tricep. We show the design process by using inverse
kinematics on different subproblems, then do a full forward
kinematic analysis including a simulation of the robot. Finally,
a mechanical implementation is presented.

I. INTRODUCTION

Many attempts have been made to apply bio-inspired
concepts in designing a robotic manipulator, during which
some novel ways of actuation and mathematical insights
were found. The main difference between popular implemen-
tations of manipulators and the human body comes from the
fact that joints in the human body are driven by muscles,
forming a closed-loop kinematic chain, while manipulators
are mostly direct-driven from the joints themselves.

This closed-loop construction allows for a more interest-
ing, but difficult design with advantages and disadvantages.
Some advantages of the passive construction is that it leads
to more strength against dynamic load and stability. The
structure may maintain tensegrity concepts to be more stable
in structure as well. However, the design process for reaching
an equivalent dexterity space with a servo-driven (active)
manipulator is considerably more difficult.

We try to explore this problem by approximating human
muscles as linear actuators. Some works we mention use
artificial muscles and pneumatic and hydraulic actuators, but
we focus on the ability of the linear actuators to maintain its
length even when no load is applied. While this freezes the
stiffness of the muscles, it allows for a safer operation of the
robot.

We will first go through a design process by using inverse
kinematic subproblems of each of the joints, then derive the
full forward kinematics of the manipulator. Then we verify
the solution by a simulator and implement the manipulator
through mechanical hardware, verifying our forward kine-
matics solution.

II. PREVIOUS WORK

The mechanism of the human shoulder has been exten-
sively researched on in the field of biomedical or biomechan-
ical engineering. Lugo et al. [1] analyzes different structures
of the rotator cuff, which involves various ligaments, joints,
and muscle-tendon structures in order to mobilize and sta-
bilize the movement the human arm. In particular it focuses
on the roles of these muscles in view of static and dynamic
stability. Rosso et al.[2] focus on the role of the deltoid

muscle in limiting the translation of the humeral joint which
strengthens the fact that the human shoulder joint acts as a
3-DOF spherical joint with limited degree of translation.

While most industrial manipulators (Stanford Arm,
PUMA, UR-10, etc.) implement two revolute joints in order
to approximate a spherical joint, it is a well-know fact
that this construction leads to singularities in the robot’s
workspaces. Two popular alternatives to deal with this prob-
lem are the use of Permanent-Magnet Spherical Motors [3],
where a spherical joint itself is actuated by a spherically
arranged array of solenoids, and a passively-driven spherical
joint using parallel kinematic mechanisms such as Stewart
Platforms [4]. While the former method has to simulate
a perfectly spherical joint with continuous rotation, it has
disadvantages in torque capacities and lacks the amount of
stability provided by a closed-loop mechanism such as the
latter.

In our work, we propose controlling spherical joint of a
shoulder and a revolute joint of the elbow by passively driv-
ing a joint using electrical linear actuators. Passive control
of joints using closed-loop mechanisms have been popular
among bio-inspired manipulator designs due to its dynamic
stability and the ability to handle static load more efficiently.
Lenarcic and Stanisic [10] have researched into simulating a
human shoulder complex by implementing a stewart platform
with an additional offset angle to widen the range of motion
allowed by the mechanism movement. The HUMA arm
by Okadome et al. [16] implement this mechanism using
pneumatic actuators and are successful in simulating a human
shoulder complex. Okada and Nakamura [11] implement a
rigid link design with 3DOF in a closed kinematic chain,
which also successfully simulates the human shoulder joint.
Recent kinematic analysis is done by Ingram et al., [13]
to analyze a 3-3 Stewart Platform implementing a human
shoulder.

This work focuses on adapting similar mechanisms by
an electric linear actuator as opposed to pneumatic [16]
or hydraulic [23] approaches. Particularly we focus on the
ability of electric linear actuators to implement a worm-rack-
pinion construction where the movement of the pinion cannot
drive the worm. Thus the manipulator has the ability to hold
a load in a certain position without consuming much energy.

Additionally we focus on the ability of the anthromorphic
arm to isolate the load on the end-effector from the actuators,
which makes the manipulator more efficient in carrying static
load compared to simple motors where the whole moment
must be counteracted by the motor’s torque, as well as more
safe due to its ability to stop when no power is applied.
The problem of static-load mitigation has traditionally been



done by methods such as gravity-counterbalancing: Whitney
and Hodgins [14] implement a anthropomorphic solution to
simulate a singularity-free arm with gravity counterweights.
Recent interests in tensegrity has also motivated the anal-
ysis of muscloskeletal manipulators with stiffness control.
Lessard et al. [6] have implemented a tensegrity-oriented
actuator with isolation of compression components. This
work aims to follow a similar analysis to show the structural
advantage of passively-controlled manipulators.

III. MECHANICAL PLATFORM DESIGN

We propose a passively-controlled anthropomorphic ma-
nipulator by imitating the human bone-joint structure with a
kinematic chain, then passively controlling it by an array of
linear actuators. This bone-joint kinematic chain is illustrted
in Figure 1.

Fig. 1. (Left) Anatomy of a human arm [21] (Center) Simple kinematic-
chain approximation of our manipulator (Right) Linear actuators controlling
for passive control of joints. Active controlled joints are colored in red.

There are 3 linear actuators whose lengths will be denoted
by ~S1,~S2,~S3 to passively control a spherical shoulder joint.
This simulates the working of the three deltoid muscles (an-
terior, lateral, posterior). The elbow joint is overconstrained
by 2 linear actuators (~L1,~L2) to simulate the bicep and the
tricep. The wrist joint is actively controlled in circumduction
by a servomotor (with θ3 variable) to simulate the supinator
and pronator muscles, and controlled in flexsion by a sixth
linear actuator (~L3) to simulate the flexor muscle.

While this construction of linear actuator is efficient in
energy and handling static load, they inherently limit the
allowed range of movement within each joint’s movement
due to collision and mechanical throw limits. Thus the key
factor in implementing a good manipulator design is to max-
imize the reachable dexterity workspace of the manipulator
(other issues such as dynamic stability can be discussed
later). Again using an anthropomorphic analysis, research by
Klopcar et al. [19] suggests that the human shoulder has 230◦

range of movement along the sagittal plane (that divides the
body into left and right), 180◦ range of movement along the
frontal plane (that divides the body into back and front), and
150◦ range of movement along the axial plane (that divides
the body into head and tail). Kurrilo et al. [1] also supports
similar range of movement by evaluation using Kinect. We
aim to reproduce these results, with limitations due to the fact

that the human shoulder joint is not completely spherical.
The above results also utilize additional joints at the collar
bone and the upper back.

A. Design Process

For designing the mechanical construction of the manip-
ulator we focus on individual subproblems of each joint
(shoulder, elbow, wrist) and the ease of figuring out the
inverse kinematics of each subproblem to decide on different
parameters. Given a goal range of movements (Euler angles
ψ,θ ,φ for shoulder joint and 2-dimensional angle θ for
elbow and wrist joint) and linear actuator constraints ~Lmin ≤
~L ≤~Lmax, the design problem is to select the start and end
points of the linear actuators so that the goal angle range can
be covered.

B. Shoulder Joint

The shoulder joint is critical in maximizing the allowed
angular displacement of the whole manipulator. Due to
the fact that it is a spherical joint, the performance of a
shoulder joint is evaluated by the percentage of the SO(3)
outer manifold it can cover. While the Stewart’s platform is
efficient in simulating three degrees of freedom, it relatively
limits the ranges of motion of the spherical joint. We solve
this problem by taking the approach in The frame definitions
of the shoulder joint is illustrated in Figure 2

Fig. 2. (Left) Anatomy of a Deltoid (Right) Frame Definition of Analysis

Denoting the shoulder frame as s and the elbow frame
as e, we define the center of these frames to be coincident
similar to DH analysis, with rotational offset defined by ZYX
Euler angles (ψ,θ ,φ ). Then given our range of goal angles
(ψ,θ ,φ ) and the limit of linear actuators ~Smin ≤ ~S ≤ ~Smax,
our goal is to design parameters~rs

1,~r
s
2,~r

s
3,~r

e
1,~r

e
2,~r

e
3. Using the

ease of inverse kinematics of this construction, we can see
that the vectors of linear actuators can be calculated by frame
conversions:

~S1 =RRRs
e(ψ,θ ,φ)~re

1−~rs
1

~S2 =RRRs
e(ψ,θ ,φ)~re

2−~rs
2

~S3 =RRRs
e(ψ,θ ,φ)~re

3−~rs
3

where RRRs
e(ψ,θ ,φ) is a rotation matrix of the elbow frame

seen from the shoulder frame in SO(3) as a function of ZYX
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Euler angles. The dexterity space can be thus calculated by
the following algorithm:

Algorithm 1 Dexterity Space Search
1: Given ~rs

1,~r
s
2,~r

s
3,~r

e
1,~r

e
2,~r

e
3 and dexterity space D ,

2: for RRRs
e(ψ,θ ,φ) ∈ SO(3) do

3: Calculate ||~S1||, ||~S2||, ||~S3||
4: if ||~Smin|| ≤ ||~S|| ≤ ||~Smax|| then
5: Include RRRs

e(ψ,θ ,φ) ∈D
6: end if
7: end for

Figure 3 includes the result of this algorithm for design
parameters ~rs

1,~r
s
2,~r

s
3,~r

e
1,~r

e
2,~r

e
3.

Fig. 3. Result of dexterity space search of the passively driven spherical
joint

We can observe that the dexterity space covers most of
the intended space of the shoulder (ideally half the cover of
the SO(3) manifold), with ≈ 150◦ of cover space along a
single plane. However we can also observe that the above
analysis doesn’t keep in mind the physical constraints of col-
lision between different components such as linear actuator
and platform, spherical joint, etc. This requires additional
mathematical constraints that need to be considered into
this dexterity space. Regardless the above analysis gives an
insight into what design parameters will work. The design
parameters for the spherical joint is listed below:

~r x(mm) y(mm) z(mm)
~rs

1 200 0 −77.3
~rs

2 −100 173.2051 −77.3
~rs

3 −100 −173.2051 −77.3
~re

1 35 0 77.3
~re

2 −17.5 30.3109 77.3
~re

3 −17.5 −30.3109 77.3

Added with hardware constraints of collision, the allow-
able angle will decrease. Works in Lenarcic and Stanisic
[10] and Okadome et al. [16] attempt to solve this issue by
augment the allowed angle by a constant angle-offset, which
is a possible improvement for later.

C. Elbow Joint

The kinematics of a passive revolute joint controlled by
a linear actuator is a simple and well-known 3-bar linkage
problem whose dynamics is extensively studied in muscu-
loskeletal robots [17]. For design purposes we follow a frame

convention similar to Denavit-Hartenburg and define two
frames intersecting at the revolute joint: one attached to the
elbow frame (e) and another attached to the forearm frame
(f). This frame convention is illustrated in figure

Fig. 4. Overconstrained anthropological elbow joint with two linear
actuators

To simulate the biomechanics of a bicep and tricep, two
linear actuators are used to overconstrain a single revolute
joint. The main difference between the muscle and the
electric linear actuator is that the muscle only contracts,
while the linear actuator is capable of pushing back the load
as well. Thus while the overconstraining construction is not
necessary, it further helps in handling static and dynamic
forces as well as stabilizing the manipulator in place.

We can see the inverse kinematic subproblem is very
simple: that fixing the elbow frame e, our goal is to have
−180◦ ≤ θ ≤ −45◦ given the constraints of |~Lmin| ≤ |~L| ≤
|~Lmax| for linear actuators 1 and 2. Given θ , ~L1 and ~L2 can
be defined by

~L1 =RRRe
f (θ)~r

f
1 −~r

e
1

~L2 =RRRe
f (θ)~r

f
2 −~r

e
2

where RRRe
f (θ) is a rotation in SO(2) of frame f as seen from

frame e. Using these calculations, we can implement the
design with the following parameters:

~r x(mm) y(mm)
~re

1 31.75 270
~re

2 −31.75 235
~r f

1 −31.75 76.2
~r f

2 0 −38.1

We can observe that using these design parameters we can
obtain how well they match with our constraints of |~Lmin|=
197mm and |~Lmax| = 347mm| using an Actuonix 150mm
throw linear actuator. This graph is illustrated in Figure 5

We can observe that the following dimensions capture our
target angle well, with an allowable range of −180◦ ≤ θ ≤
−50.34◦.

D. Wrist Joint

The human wrist is an incredibly complex system of
muscle-tendon complexes that allows it to move in multiple
directions. The wrist joint also differs from the shoulder joint
in a sense that it is biologically not spherical. We can observe
that circumduction (rotation along the forearm as an axis)
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Fig. 5. Linear Actuator legnth per target angle for L1 and L2

happens closer to the elbow than it is to the wrist with lesser
than 180◦. An interesting point to note it that the rotation
axis of circumduction within the human forearm lies along
the Ulna (thus closer to the fourth and fifth fingers) then it
is to the center of the hand. While the reasons for this is
unknown, this complicates the geometry of the wrist joint
significantly.

Additionally, the wrist joint is able to rotate 160◦ in the
axis parallel with the palm (flexsion and extension), with a
limited range of rotation (≥ 30◦) along the axis perpendicular
to the palm (abduction). To simplify the movement of the
wrist joint we simulate circumduction of the wrist joint
by a servo (this is the only actively driven joint in our
manipulator), while simulating flexsion by a linear actuator.
For now abduction is left out since the movement is small
in the human joint as well. The justification of using a servo
motor for circumduction is that quite often, there is almost
no load along the direction of circumduction.

Again we repeat a similar analysis for the linear actuator,
where the forearm frame is defined as f and the hand frame is
defined as h. This construction is again illustrated in Figure
6.

Fig. 6. Anthropological Wrist Joint with a single linear actuator

Using a similar analysis from the elbow joint, we can see

that the length of the linear actuator can be represented by

~L3 =RRR f
h(θ)~r

h
3−~r

f
3

where RRR f
h(θ) is a rotation in SO(2) of frame h as seen

from frame h. Again using the parameters, we can design
using the inverse kinematic subproblem where we obtain the
allowable values of −90◦ ≤ θ ≤ 45◦ under the constraint
|~Lmin| ≤ |~L| ≤ |~Lmax|. For linear actuator 3, we have an
Actuonix 100mm throw actuator with ~Lmin = 147mm and
~Lmax = 247mm. This is successfully implemented by using
the following parameters:

~r x(mm) y(mm)

~r f
3 31.75 −200

~rh
3 31.75 −31.75

The ability of the linear actuator to track the wanted angle
is illustrated in Figure 7.

Fig. 7. Linear Actuator legnth per target angle for L3

IV. FORWARD KINEMATICS

The goal of forward kinematics of this manipulator is to
express the position and orientation of the end effector as
a function of actuator variables which we denote as a 6-
dimensional vector~ρL = [dS1,dS2,dS3,dL1,dL3,θ3]. (dL2 is left
out since it is overconstrained - dL1 will decide the value of
dL2) It can be seen that from our definition in Figure 1, d is
the Euclidean norm of the corresponding vector definitions
of linear actuators. While the elbow joint and the wrist
joint has straightforward solutions of forward kinematics, the
forward kinematics problem of the shoulder joint is a difficult
problem. Thus take a serial approach to forward kinematics
where the subproblem of the shoulder joint is first solved,
and then the rest of the linkages are solved through DH
parameters.

An interesting problem to note is that the mechanics
of our manipulator controlled by linear actuators, and an
equivalent manipulator controlled by servos with angular
parameters are not entirely equivalent. For instance we
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could have parametrized the manipulator as a 6-dimensional
vector ~ρA = [ψ1,θ1,φ1,θ2,θ3,θ4] using DH construction on
the equivalent kinematic chain. (center figure in Figure 1).
However, the two spaces (vector spaces of ~ρL and ~ρA) are
not isomorphic since same elements of ~ρL can correspond
to different elements of ~ρA (Figure 8). Since the vector
space of ~ρA spans the entire space allowed by our kinematic
manipulator, we can see that the vector space of ~ρL is actually
surjective to ~ρA.

Fig. 8. Illustration of same length parameters dS1,dS2,dS3 corresponding
to different roatations ψ,θ ,φ in the spherical joint. For instance, assuming
dS1 = dS2 = dS3 will lead to a single rotation about a z-axis, (ψ,0,0).
However they do not have information on if it’s a positive rotation or a
negative rotation as two cases are equivalent in the vector space of ~ρL

A. Shoulder Joint Forward Kinematics

The forward kinematic subproblem of the shoulder joint
is a difficult problem and quite equivalent to the forward
kinematics of the Stewart platforms with added constraints
and less degrees of freedom. There are two approaches to this
solution - the first one is to use geometrical constraints to
derive rotation from the inverse kinematics from a rotation
matrix parmetrization. Our solution goes for a Euler-angle
parametrization of the rotation matrix from inverse kinemat-
ics and solving it through a non-linear optimization problem.
Numerical methods of solving the forward kinematics have
been discussed in [22] and [23] using optimization methods
such as Newton-Raphson which is essentially a gradient-
descent algorithm.

For solving the kinematics of the shoulder joint, we utilize
the inverse kinematic equations of the shoulder joint which
are derived from the design section.

~S1 =RRRs
e(ψ,θ ,φ)~re

1−~rs
1

~S2 =RRRs
e(ψ,θ ,φ)~re

2−~rs
2

~S3 =RRRs
e(ψ,θ ,φ)~re

3−~rs
3

The forward kinematics problem is to obtain the rotation
of the shoulder joint ψ,θ ,φ given the lengths of the linear
actuators ||~S1||, ||~S2||, ||~S3||. Thus we define a function f that
maps the Euler angles to the squared error term:

f (ψ,θ ,φ) =


(
||RRRs

e(ψ,θ ,φ)~re
1−~rs

1||− ||~S1||
)2(

||RRRs
e(ψ,θ ,φ)~re

2−~rs
2||− ||~S2||

)2(
||RRRs

e(ψ,θ ,φ)~re
3−~rs

3||− ||~S3||
)2


Then the optimization problem is defined as the following:

Minimize f (ψ,θ ,φ) subject to ψmin ≤ ψ ≤ ψmax

θmin ≤ θ ≤ θmin,φmin ≤ φ ≤ φmax

We use Levengerg-Marquardt [24] (Dampled Least Squares)
to solve this non-linear optimization problem, which is
essentially a Jacobian descent algorithm. The parameters
of ψmin,ψmax,θmin,θmax,φmin,φmax are selected to avoid the
issue illustrated in Figure 8, which tells us that f is not a
convex function. Because Levengerg-Marquardt is a convex
optimization algorithm that cannot deal with global min-
imization, this procedure is necessary. Thus given linear
actuator lengths ||~S1||, ||~S2||, ||~S3||, we can define the homo-
geneous transformation in SE(3) that maps the elbow frame
to the stationary shoulder frame by

gs
e(dS1,dS2,dS3) =

[
RRRs

e(ψ,θ ,φ) ~0
~0T 1

]
where (ψ,θ ,φ) is the result of the optimization problem
on f (ψ,θ ,φ) described above, and the ZYX Euler angle to
rotation matrix is

RRRs
e(ψ,θ ,φ) =

 cψcθ sψcθ −sθ

cψsφsθ − sψcφ cψcφ + sψsφsθ cθsφ

sψsφ + cψcφsθ sψcφsθ − cψsφ cφcθ


B. Elbow and Wrist Forward Kinematics

For the wrist and elbow, we can see that the relation
between the angle parameters of the joint and the length
parameters of the linear actuator are bijective within allowed
angles (Figure 5 and 7) In fact, they were designed to be
bijective! Thus a DH parametrization is allowed on the joints.

To elaborate on this matter, we can mathematically see
that the inverse kinematics problems in the form of

d = ||RRRa
b(θ)~r

b
1−~ra

1||

can be formulated in a forward kinematics problem of
solving θ given d. Squaring the terms give us an equation
in the form of

Acos2
θ +Bsin2

θ +C cosθ sinθ

+Dcosθ +E sinθ +F = 0

which can then be solved by imposing real and angle range
constraints. The terms are illustrated in the appendix. A
similar argument can be made geometrically by observing
Figure 4 and 6 - once the length is determined, the angle is
determined as well.

Thus it is possible to use DH parametrization after convert-
ing linear actuator lengths to angles to calculate the forward
kinematics. We use a DH construction on the elbow and
wrist manipulator starting from the shoulder frame. The axis
definition and frame definitions are illustrated in Figure 9.

Following DH parametrization, we can see that the for-
ward and kinematics of the elbow and wrist manipulator can
be expressed using the following parameters:
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Fig. 9. Axis and Frame Definition for Elbow and Wrist Manipulator

i g ai αi di+1 θi+1
0 ge

1 0 −π

2 0 θ1
1 g1

2 a1(constant) π

2 d2(constant) θ2
2 g2

3 0 −π

2 0 θ3
3 g3

T a3(constant) 0 0 0

From these we can see that the elbow manipulator to the tool
frame can be defined as

g0
T = g0

1g1
2g2

3g3
T

where the transformations are functions of ai,αi,di+1,θi+1:

gi
i+1(ai,αi,di+1,θi+1)

=


cosθi+1 −sinθi+1 0 ai

sinθi+1 cosαi cosθi+1 cosαi −sinαi −di+1 sinαi
sinθi+1 sinαi cosθi+1 sinαi cosαi di+1 cosαi

0 0 0 1


Here we can see that θ1 is a function of dL1, θ2 is a direct
manipulator variable, and θ3 is a function of dL3 (dL2 is
overconstrained). Thus we can see that the elbow and wrist
forward kinematics can be expressed by

g0
T (dL1 ,θ2,dL3) = g0

1(Θ1(dL1))g
1
2(θ2)g2

3(Θ3(dL2))g
3
T

where Θ(d) maps the linear actuator variable to angle DH
parameter.

C. Manipulator Forward Kinematics

With the above results we define the forward kinematics
of the whole manipulator by

gs
T (dS1 ,dS2 ,dS3 ,dL1 ,θ2,dL3)

= gs
T (dS1,dS2,dS3)ge

0g0
T (dL1 ,θ2,dL3)

Here there is one added homogeneous transformation ge
0

which maps the frame e at the base of the elbow to the 0
which is on top of the elbow. We can define them as frames
with same orientation with offset of length of forearm. which
we denote as d0:

ge
0 =

[
III d0ẑ
~0 1

]
V. SIMULATION

In order to verify the forward kinematics we implement a
simulation via MATLAB to graphically illustrate the position
of the linkages and the linear actuators given the forward
kinematics parameters dS1 ,dS2 ,dS3 ,dL1 ,θ2,dL3 . Some of the

example cases are illustrated in this section. The code of the
simulator is included in appendix.

A. Maximum Shoulder Angle
In this illustration we describe the maximum shoulder

angle by setting dS2 and dS3 to minimum angles of the linear
actuator lengths. In this case the variables that are used are
as follows:

dS1 dS2 dS3 dL1 θL2 dL3
286 197 197 260 0 180

The units are in mm. Given these variables, the resulting
configuration of the manipulator is illustrated in Figure 10

Fig. 10. Illustration of Maximum Shoulder Angle Simulation. Mechanical
links are illustrated in black, and frame coordinates are illustrated in green.
The linear actuators are illustrated in red.

Fig. 11. Illustration of maximum shoulder displacement

From the sideview illustration in Figure 11, we can ob-
serve that the actual dexterity space is considerably smaller
compared to our original design intent due to collision issues.
In fact this particular spherical joint is only able to achieve
a 45◦ offset from the z-axis of the stationary frame which
limits our dexterity space and movement.

B. Shoulder Circumduction
We also illustrate the simulation’s capability to express

rotations along the axis of the forearm by setting dS1 ,dS2 ,dS3 .
The parameters for this simulation are
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dS1 dS2 dS3 dL1 θL2 dL3
260 260 260 310 π

2 200

The simulation result is illustrated in Figure 12. We can
observe the validity of the forward kinematic solution in
expressing the rotation along the z-axis.

Fig. 12. Illustration of shoulder platform rotation along the z−axis

VI. INVERSE KINEMATICS

The inverse kinematics of this manipuluator can be ob-
tained by solving the inverse kinematic problem on the sim-
ple kinematic chain approximation (Figure 1 center figure)
because the variable space of our linear actuator manipulator
is surjective to the variable space of the equivalent servo-
controlled manipulator. The inverse-kinematic of an anthro-
pomorphic human arm with 7-DOF is a well-known problem
and has been solved in closed form [28][29]. Thus without
going through the full inverse kinematics derivation, we
describe a methodology of switching the obtained solution
in terms of angles to linear actuator lengths. This problem
is trivial and was solved in the design section of this work,
but the formal formulation follows:

Given goal orientation and position in homogeneous
transformation gs

T , the goal is to obtain parameters ~ρL =
[dS1 ,dS2 ,dS3 ,dL1 ,θ2,dL3 ]. Assuming we can obtain parame-
ters ~ρA = [ψ,θ ,φ ,θ1,θ2,θ3] from the original inverse kine-
matics formulation, we can translate it by the equations given
in the design process:

dS1 = ||RRR
s
e(ψ,θ ,φ)~re

1−~rs
1||

dS2 = ||RRR
s
e(ψ,θ ,φ)~re

2−~rs
2||

dS3 = ||RRR
s
e(ψ,θ ,φ)~re

3−~rs
3||

dL1 = ||RRR(θ1)~r
f
1 −~r

e
1||

θ2 = θ2

dL3 = ||RRR(θ3)~rh
3−~r

f
3 ||

Here RRRs
e(ψ,θ ,φ) is a rotation matrix in SO(3) and RRR(θ) is

a rotation matrix in SO(2).

VII. MECHANICAL IMPLEMENTATION

After figuring out the necessary geometrical parameters of
the manipulator, we implement a mechanical design of the
passively-driven manipulator. The hardware implementation
is shown in Figure 13 and submitted. The configuration of the
hardware was modeled after the simulation result in Figure
10, which is maximum angle of the shoulder. One interesting

Fig. 13. Mechanical construction of the manipulator

problem that we noticed in the mechanical design was that
three actuators of the spherical joint did not constrain the
axial movement (circumduction) completely. This may be
a result of some components in the small spherical joints
above and below the linear actuators not being completely re-
strained, thus worsening the non-uniqueness of the forward-
kinematics solution mentioned above.

VIII. CONCLUSION & FUTURE WORKS

In this work we have designed the bio-inspired anthro-
pomorphic manipulator that is passively driven by 6 linear
actuators and a servo, providing 6-DOF movement. The
forward kinematics i s derived with a mixed-approach of
non-linear optimization and DH parameters, and validated on
a simulation. Finally, the arm is mechanically constructed.

The mechanical design process was challenging as it is
difficult to model all the collisions and physical parameters
of the manipulator with an exact mathematical formulation.
This describes the reason between the dexterity space search
in Figure 3, and the actual maximum joint angle allowed by
the mechanical design illustrated in Figure 11. For a joint
approach will be needed between a this a Computer-Aided
Design (CAD) model and the kinematic design equations.

For future work we wish to investigate the exact benefits
of using a passively-controlled manipulator by carrying out
static and dynamic load analysis on the model of our manip-
ulator. Furthermore, control and dynamics of the manipulator
using Jacobian and optimization for motion-planning (path
and velocity) is required before the arm can be put into
action.
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