
A Fast PRM Planner for Car-like Vehicles

Authors: Hyung Ju Suh, James Deacon, Qifan Wang

Abstract— We present a probabilistic roadmap method
(PRM) for Ackermann vehicles by exploring the non-holonomic
constraint of the Ackermann linakge. Similar to most PRM
methods, the configuration space is first sampled in order
to guarantee no-collision of the vehicle. Then, the sampled
states are connected using proximity and our own algorithm
for modeling the non-holonomic properties of the Ackermann.
Finally, a path-searching algorithm is applied to find the
shortest path from the start to goal state. We show that the
path planner is successful in finding the shortest path while
incorporating the non-holonomic constraints, and discuss some
important computational properties of this method.

I. INTRODUCTION

Many robotic path-planning algorithms assume a holo-
nomic or a differential vehicle, where the robot can move
in all three degrees of freedom in SE(2). (Or in the case of
differential vehicle, approximate the full degree of freedom
by turning in place) However, often times ground-based
vehicles use steering schemes that make the vehicle non-
holonomic. A popular example is a car-like vehicle that
only has two degrees of freedom in throttle and steering.
This condition puts additional constraints on the robot’s
kinematics, which makes it difficult to devise a general non-
holonomic path planner that is able to satisfy every steering
scheme.

Among popular steering schemes of a car-like vehicle, we
focus on the Ackermann steering model, which is shown to
approximate the steering curve nicely in low speeds and zero
slip-angles [1]. We also show that the proposed method can
be extended to other steering methods such as bicycle, rack-
pinion, or Anti-Ackermann steering, as long as they satisfy
the criteria that the vehicle’s change in orientation can be
fully recovered once its change in position is known within
a certain resolution.

Popular methods behind holonomic path planning of
robotic vehicles have largely based themselves on the Prob-
abilistic Roadmap (PRM) method [2], which views path
planning in a graph generation and searching context. Many
variations of the PRM exist that takes into different sam-
pling methods, connection methods, and collision-checking
methods [3]. However, non-holonomic properties of certain
vehicles are difficult to incorporate into the PRM framework.

Some alternatives to non-holonomic path planning are
based on motion primitives. In Pivtoraiko and Kelly [4,5],
the non-holonomic motion planning is done by dividing the
space into different lattices and utilizing motion primitives to
connect the movement from one lattice to another. While this
method is efficient and tractable, the Euclidean lattice doesn’t
fully allow to consider the shapes of various obstacles.
Additionally, utilizing motion primitives confines the allowed

motion into a set of certain motions, which blocks some paths
from being fully utilized for optimal path planning.

Other approaches utilizes other shape representations in-
stead of curves and lines to model the paths of the Ack-
ermann vehicle. The most representative work is Dubin’s
path [6], which models the path as a series of circles and
lines tangent to the circles. Reeds and Sheep [7] explore
a variation where the vehicle can go backwards. Other
approaches utilize sinusodial curves [8], or Bezier curves
and splines [9,10] to approximate an Ackermann path. These
methods have been most successful in describing the path
of Ackermann vehicles. However, the math behind various
curves and shape representations hasn’t successfully been
integrated into sample-based motion planning, as few of
these works deal with the no-collision constraint, and the
solutions are not proven to be tractable.

In this work we propose a simple revision to the PRM
method by dealing with non-holonomic motion constraint as
a graph-connection problem between states. By retaining the
PRM method, we argue that we can keep some nice proper-
ties of the PRM, such as its completeness, tractability, and
probabilistic convergence. The rest of the paper is arranged
as follows: Section II. will first describe the geometry of
the Ackermann steering curve. Section III.A will describe
the C-space sampling procedure, as well as our definitions
for collision detection. This corresponds to building a vertex
set of our graph. Section III.B will deal with generating the
edges of the graph by applying the proximity condition and
the Ackermann model. Finally, the results of these theories
are simulated and shown in Section IV. In Section V. we
will discuss some interesting properties and details of our
method.

II. NON-HOLONOMIC ACKERMANN MODEL

An Ackermann vehicle only has 2 degrees of freedom for
steering and throttle. However, it operates on a 3 dimensional
space in SE(2). Therefore the vehicle is inherently not fully
controllable, and thus considered non-holonomic. Due to
these inherent limitations in controllability, path planning for
non-holonomic vehicles need to consider the manner of this
loss to avoid paths that the vehicle cannot follow.

Although it is difficult to fit all the non-holonomic charac-
teristics of various vehicles into a single framework, we at-
tempt to achieve a generic representation of car-like vehicles
(fixed rear wheel and front wheel steering) by representing
the steering curve as a family of functions:

y = S(δ ,x) = {s(x)|s(x) is a steering geometry

with steering angle parameter of δ}

which could be tuned differently for different steering link-
ages, such as rack & pinion, anti-Ackermann, bicycle, four-
wheel steering, and etc. The Ackermann linkage will specif-
ically be used for this work. Additionally, we achieve a
functional representation of steering by setting the resolution
of the path planner to be within the limits of a bijective
function relation. For instance, we approximate a circle by
an arc by limiting the region of interest.

In order to model the steering geometry for the path
planner, we utilize the Ackermann model described in Jazar’s
work [1].This is illustrated in Figure 1.

Fig. 1. Model of Ackermann Geometry, from [1]

The radius of the vehicle can be obtained from the vehicle
geometry and steering geometries

R(δ) =
√

a2
2 + l2 cot2 δ

where δ is the cotangent average of δ0 and δi. The steering
center O is defined as an intersection between a circle of R
from the vehicle center C, and the horizontal line drawn by
connecting the back wheels. In our framework, we consider
the steering curve from the vehicle’s body frame as illustrated
in Figure 2.

As a function of δ , this steering curve can then be
expressed as the following family of functions:

S(δ ,x)

=

y =−

√
R(δ)2− (x+a2)2 +

√
R(δ)2−a2

2 if δ > 0

y =
√

R(δ)2− (x+a2)2−
√

R(δ)2−a2
2 if δ < 0

y = 0 if δ = 0

An important characteristic of the steering function S(δ ,x)
is that for a given Euclidean position (x,y), there only
exists one allowed steering function S(x) that allows the
robot to reach the state. Thus this accurately describes the
Ackermann geometry by connecting the angular state θ as
a function of x,y. These functions are validated and plotted

Fig. 2. Function representation of Steering Model

for the geometries of a car vehicle. The example used is
the Mercedes CLA250. The maximum steering angle δ is
decided based on its curb-to-curb steering diameter. This is
illustrated in Figure 3.

Fig. 3. Plot of steering functions from δmax to −δmax

Finally, in order to correctly define the domain in which
S(δ ,x) is valid as a function representation, we present a
relation that resolution has with the wheelbase and the max-
imum steering angle. This can be achieved with observing
when the slope of S(δ ,x) blows up, and is described by the
equation

res≤
√

R(δmax)2 +(R(δmax)−a2)2

To give a sense of the scale of this resolution, for Mercedes
CLA250 with a wheelbase of 2.7m and maximum steering
angle of δ = 26.85◦, the resolution of the planner must be
smaller than 6.8925m.

2

III. MOTION PLANNING METHOD

We view motion planning in a graph-search framework,
taking an approach in a Probabilistic Road-Map (PRM)
framework. PRM approaches usually take the following steps
in order to generate a feasible path from one state to another:

1) Sample the C-space and collect collision-free vertices
2) Iterate through vertices and connect them based on

proximity
3) Search graph for the shortest path from start to goal

While we repeat the first and last steps of the PRM method,
we address the non-holnomic constraints of the Ackermann
vehicle by incorporating the constraint in edge connection.
Apart from the proximity condition defined by the resolution
of the path planner, we impose additional constraints as
described in Section III.B.

A. Vertex Generation: C-Space Sampling

In this section we illustrate the method used for sampling
the C-space, and how collision-detection is achieved. The
high-level overview of the algorithm is to sample states
~X = (x,y,θ), and only include states that do not collide with
obstacles. Obstacle and robot representation can either be
done continuously (analytically), or by discretizing the ob-
stacle and the robot. In our approach, the robot is discretized
while the obstacles are encapsulated by a combination of
booleans.

Robot discretization is done by dividing the robot geome-
try into a set of points R(x,y). We choose this discretization
to a regular lattice spacing. On the other hand, the obstacles
will be represented as a collection of booleans such that
for every line segment on the boundary, we define a linear
inequality. This way we can check for every discretized point
on the robot if the robot meets the boolean condition of not
being within the obstacle, and achieve collision detection.
This idea is illustrated in Figure 4.

Fig. 4. Illustration of collision between discretized robot and boolean
obstacle

Note that in order to apply a boolean condition, the
obstacles must be a convex shape. To extend this idea to

concave shapes, we can make use of the fact that every
concave vehicle can be broken down into series of convex
shapes [11]. Thus the algorithm for C-space sampling is
illustrated as follows:

Algorithm 1 C-space Sampling Algorithm
1: Given number of sample points N
2: Given map dimensions [map−x,mapx,map−y,mapy]
3: Initialize V = /0
4: while True do
5: Choose xr randomly from [map−x,mapx]
6: Choose yr randomly from [map−y,mapy]
7: Choose θr randomly from [0,2π]
8: for all [x,y]T ∈ R(x,y) do . Robot Discretization

9:

[
x′

y′

]
= R(θr)

[
x
y

]
+

[
xr
yr

]
. Coordinate Transform

10: if [x′,y′]T is not in obstacle then
11: ~X = [x,y,θ] ∈V
12: end if
13: end for
14: if |V |= N then
15: break
16: end if
17: end while

B. Edge Generation: Non-holonomic Model

In traditional edge generation in graph-based methods for
holonomic vehicles, the edges are usually connected based
on a proximity function based on the L2 (Euclidean) norm.
The algorithm loops through all the vertices, looks at close
points, and generates the edge. This traditional algorithm is
illustrated in Algorithm 2.

Algorithm 2 Holonomic Edge Generation

1: Given V = {~X |~X = [x,y,θ]T}, res
2: Initialize E = /0
3: for all ~Xi ∈V do
4: Initialize Pi = /0
5: for all ~X j 6= ~Xi ∈V do . Proximity Search
6: if

√
(xi− x j)2 +(yi− y j)2 ≤ res then

7: ~X j ∈ Pi
8: end if
9: end for

10: for all ~X j ∈ Pi do
11: if (~Xi,~X j) /∈ E then (~Xi,~X j) ∈ E
12: end if
13: end for
14: end for

We revise this algorithm by imposing a non-holonomic
constraint on the vehicle by relating θ to x and y. The high-
level idea of the non-holonomic constraint algorithm is given
as follows:

1) Observe near configurations in the body frame of the
robot’s state

3

2) Based on other configuration’s Euclidean coordinates
(x,y), calculate its allowed angle θ using the non-
holonoic model

3) If the sampled state’s angle θ is within the tolerance
value of the calculated value, then connect the graph

This can be expressed mathematically as follows. Given two
configurations ~Xi = [xi,yi,θi]

T and ~X f = [x f ,y f θ f]
T , we can

use coordinate transform to view ~X f from the body frame
of ~Xi, and denote this state ~X ′ = [x′,y′,θ ′]. This is a simple
transform using planar displacements,

~X ′ =

x′

y′

θ ′

=

R(−θi)

([
x f
y f

]
−
[

xi
yi

])
θ f −θi

After this, we can proceed to observe ~X f in the body frame
of ~Xi. This is illustrated in Figure 5.

Fig. 5. Other states of robot viewed from body frame of current state

Next, we apply the steering function by calculating θ ′

from x′ and y′. From the equations of Ackermann kinematics,
we can express the radius of steering R as a function of x′

and y′

R(x′,y′) =

√(
x′2 +2a2x′+ y′2

2y′

)2

+a2
2

We can immediately put a constraint based on this calculated
radius, since the vehicle has a minimum turning radius based
on δmax. Calculating the radius allows us to recover the full
steering curve S(x) from x′ and y′. We calculate the allowed
angle value of taking a slope of this curve.

θc(x′,y′) =
dy
dx

=

atan(x+a2√

R(x′,y′)2−(x+a2)2
) if y > 0

−atan(x+a2√
R(x′,y′)2−(x+a2)2

) if y < 0

0 if y = 0

Then, the final check is to compare this value with the sample
value θ ′ to see if this is an allowable configuration. We can
do this by defining a tolerance for the path planner, such that

|θ ′−θc(x′,y′)| ≤ tol

Finally, if the edge is connected, we can weight the edges by
the Euclidean distance between the position of the two states
so that the path searching algorithm can take the shortest
path. The overview of the final edge-generation algorithm is
illustrated in Algorithm 3.

Algorithm 3 Non-Holonomic Edge Generation

1: Given V = {~X |~X = [x,y,θ]T}, res, and tol,
2: Initialize E = /0
3: for all ~Xi ∈V do
4: Initialize Pi = /0
5: for all ~X j 6= ~Xi ∈V do . Proximity Search
6: if

√
(xi− x j)2 +(yi− y j)2 ≤ res then

7: ~X j ∈ Pi
8: end if
9: end for

10: for all ~X j ∈ Pi do . Non-Holonomic Constraint
11: Compute ~X ′ by coordinate transformation
12: Compute θc(x′,y′) from ~X ′

13: if |θc(x′,y′)−θ ′|< tol and R(x′,y′)<Rmax then
14: (~Xi,~X j) ∈ E
15: w(~Xi,~X j) =

√
(xi− x j)2 +(yi− y j)2

16: end if
17: end for
18: end for

C. Shortest Path Search Algorithm

By III.A and III.B, we have generated a complete graph
G= (V,E) with all the desired vertices and edges. Therefore,
what is left to do is to search the graph from our desired start
configuration ~Xi, to the final configuration ~X f . Among possi-
ble shortest-path searching algorithms, we choose Dijkstra’s
algorithm[12] for the graph search process because of its
simplicity. One alternative is the A* algorithm [13], which
works on the same principle with Dijkstra’s algorithm with
an added heuristic function and a priority queue. The A* will
outperform Dijkstra’s algorithm in most cases.

However, we argue that the usual heuristic function used
in A*, which is the Euclidean distance between positions of
~Xi and ~X f , may not be effective as it is in holonomic motion
planning. This is because non-holonomic motion planning
doesn’t necessarily take the Euclidean distance as a good
heuristic. In this regard, even inexperienced humans have a
hard time reaching from one state to another when driving
a car in confined space (such as parking) which tells us
that designing a good heuristic function for non-holonomic
vehicles is a challenging task.

Dijkstra’s algorithm has been extensively described in
various sources, but we describe the pseudocode in algorithm
4 for a review.

4

Algorithm 4 Dijkstra’s Algorithm for Shortest Path Search
1: Given Graph G = (V,E) and weights w(E)
2: Given source vs and target vt
3: Initialize Q = /0
4: for v ∈V do
5: dist(vs,v) = ∞

6: prev(v) = undefined
7: v ∈ Q
8: end for
9: dist(s,s) = 0

10: while Q 6= /0 do
11: u = vertex in Q with minimum dist
12: u /∈ Q
13: for v as neighbor of Q do
14: if dist(vs,u)+w(u,v)< dist(vS,v) then
15: dist(vs,v) = dist(vs,u)+w(u,v)
16: prev(v) = u
17: end if
18: end for
19: end while

IV. RESULTS

In this section, we present the results of the theory of
Sec.III, tested in a simulation environment. We will first
present the validity of C-space sampling and our collision
detection algorithm. Then we will test the holonomic motion
planner to illustrate the results of the PRM method. Finally,
we present the results of our non-holonomic motion planner.

A. C-space Sampling

First we present the result of sampling the C-space accord-
ing to Algorithm 1. The sampling result with various convex
shapes is illustrated in Figure 6. In addition to the algorithm
above, we also augment the car boundaries by 1 meter in
order to ensure no collisions in between the points.

Fig. 6. Sampling result on various convex objects. Block dots represent
the x,y coordinates of the samples, and the orange polygons represent the
obstacles. Car size (blue) illustrated for scale.

We can observe that the sampling result accurately sim-
ulates the C-obstacles once the sample is dense enough. In
Figure 6, the number of points were done as N = 20000. In
Figure 7, we illustrate the fact that a concave object can be
represented by a series of convex objects in modeling the
C-space.

Fig. 7. Sampling result on a concave object, as a combination of convex
objects. Block dots represent the x,y coordinates of the samples, and the
orange polygons represent the obstacles. Car size (blue) illustrated for scale.

Through Figure 6 and 7, we have shown that our method
for collision-detection is good enough to handle obstacles of
various shapes, regardless of its convexity.

B. Holonomic Path Planner
In this section, we present the result of the holonomic

motion planner using Algorithm 2, which is the traditional
PRM method. For the map in Figure 6, the result of path
planning is illustrated in Figure 8

Fig. 8. Result of the holonomic path planner. The vehicle starts from blue
to red, and the path is drawn in green

We show another example of the holonomic path planner
in the concave obstacle of Figure 9.

5

Fig. 9. Result of the holonomic path planner. The vehicle starts from blue
to red, and the path is drawn in green

In both executions, the PRM method is successful in find-
ing a shortest path assuming that the vehicle is holonomic.

C. Non-Holonomic Path Planner

In this section, we finally present the result of our own
algorithm on non-holonomic path planning.

1) Without Obstacles: Results of the non-holonomic path
planning without obstacles is quite meaningful because it
allows us to observe how one state is reached from another
purely using the vehicle’s Ackermann kinematics. Figure 10
illustrates one case of this algorithm.

Fig. 10. Result of the non-holonomic path planner that emphasizes smooth
turning capabilities. The vehicle starts from blue to red, and the path is
drawn in green

We can see that unlike the holonomic motion planners,
which will likely rotate, draw a straight line, and rotate,
a non-holonomic motion planner approximates the shortest
path by a smooth path that is more friendly to its kinematics.
Next, Figure 11 illustrates the ability of the path planner to

maneuver with point turns. The use of graph-searching easily
allows it to go backwards with a different curvature, which
allows the presence of cusps in point-turning maneuvers that
approximate the kinematic shortest path better. Often times
in free space, the solution to point-turning is found by the
intersection of two steering circles that form a cusp. This is
also known as the Reeds-Shepp curve [7].

Fig. 11. Result of the non-holonomic path planner that emphasizes point-
turning capability. The vehicle starts from blue to red, and the path is drawn
in green

Finally, Figure 12 shows two configurations that are close
to each other, in which multiple point turns must be made.
The figure illustrates a 3-point turn that the vehicle takes in
order to get from start to goal.

Fig. 12. Result of the non-holonomic path planner. The vehicle starts from
blue to red, and the path is drawn in green

2) With Obstacles: In this section we put some plausible
environments as obstacles to test the non-holonomic planner
with obstacle spaces. Specifically, we show two cases of
parking in which the vehicle must make point turns and

6

maneuvers to get to the goal. Figure 13 illustrates typical
backwards parking start and goal configurations.

Fig. 13. Result of the non-holonomic path planner with obstacles, with
a backwards-parking scenario. The vehicle starts from blue to red, and the
path is drawn in green. Yellow marks the forward orientation of the vehicle

We can observe that the path nicely represents what a
human would do in order to park the car backwards, and
successfully finds a path from the start to goal configuration
without any collisions. Additionally, in order to address the
parallel-parking problem mentioned in [10], we simulate the
start and goal configurations for parallel parking as well. The
close-up of the resulting path is illustrated in Figure 14

Fig. 14. Result of the non-holonomic path planner with obstacles, with a
parallel parking scenario. The vehicle starts from blue to red, and the path
is drawn in green. Yellow marks the forward orientation of the vehicle

We can see that the algorithm approximates the parallel-
parking curve quite well, and will probabilistically converge
to the shortest path with more densely-sampled points given
the properties of the PRM method.

V. FURTHER WORK & DISCUSSION

In this section we comment on certain aspects of our path
planner, that has to do with resolution, sampling, tractability,

and comparison with other methods.

A. Resolution

One of the major shortcomings of this method is that the
points need to be sampled sufficiently dense within a given
space. This deals with the fact that the condition for recov-
ering the steering curve loses functional representation when
the points are sampled more sparsely than the resolution
criteria. However, this can be solved with a more careful
formulation of the steering curve if we choose to let go of
the functional representation, and instead incorporate a full
circle instead of the arc. These arcs are useful because we
can fully recover the predicted change in orientation from
the change in position, and in the case of circles, it is likely
that multiple solutions exist and we will lose this property.

On the other hand, one could argue that this resolution
is sufficiently dense. Using the Mercedes CLA250 as an
example, we showed that the minimum resolution needed for
the path planner is along three-fold bigger than the vehicle
size. In order to reconstruct the motion finely with a sample-
based method, a three-fold resolution is not too coarse of a
resolution.

B. Random Sampling

We present a more interesting problem here. In the PRM
framework with holonomic robots, we were allowed to ran-
domly sample x,y and θ independent of each other, because
the robot has all three degrees of freedom to move. However
for this non-holonomic planner, there is an added condition
that even if the positions of the samples are finely sampled,
there needs to be sufficiently many states with allowable
angles in order for the path planner to find a feasible path.
This issue can be reformulated with the following problem:
this method ends up wasting the positions of many sampled
states because the angle state is not allowable from the
current state, even if that position is reachable with a different
orientation. Thus the method, as is, requires a very dense
sampling that probabilistically guarantees that an allowable
state with the right position and the right angles always
exists.

Thus this method can be improved with a more careful
sampling method that guarantees less position states and
more angular states. One option is to sample the (x,y) space,
and augment each state with a regular-spaced angles. This
assures that for each sampled positions, we have sufficiently
many angles to make the position allowable. This brings
the proposed method closer to the lattices used in motion
primitive methods, and will require further discussion in
completeness.

C. Tractability

We consider our algorithm to be tractable since it does
not add much more asymptotic time complexity to the PRM
method. The added constraint to represent non-holonomic
motion does not do any additional search compared to the
original algorithm, (this can easily be seen by comparing
Algorithm 2 and Algorithm 3), and always computes a fixed

7

amount based on the nearby points it is searching. Therefore
our algorithm multiplies a constant time complexity O(1)
to the PRM method, and is asymptotically tractable at the
same complexity as the PRM. Thus our algorithm can be
considered probabilistically complete as well.

To give a sense of the node and time tradeoff, the non-
holonomic simulation runs with N = 10000 nodes take
around 5 to 10 minutes on a regular desktop computer,
depending on the size of the resolution. (If resolution is
low while the sample number is high, the graph will be
much more connected, and this will require more time
in graph searching). However, using the angle resolution
augmentation mentioned in Section V.B, it is possible to
sample much less points to bring it closer to real-time.

D. Comparison with other methods

There are four methods that can be mentioned and com-
pared with the presented path planner, with different charac-
teristics of the generated path: the general non-holonomic
PRM, the motion primitive approach, the curve primitive
approach, and the non-holonomic Rapidly-exploring Random
Trees (RRT).

The general non-holonomic PRM approaches the con-
straint by solving boundary-value problems of the general
control function of the vehicle, and then verifying collision
later by taking a lazy-PRM approach [14,15]. This method
is not too different from our proposed method, but our
method is inherently more model-based and the equations
and conditions are faster to evaluate compared to numeri-
cally searching for solutions, or solving implicit equations.
However, utilizing the purely kinematic relations makes it
difficult to incorporate the dynamics in our framework, and
a revision is needed to extend our method to kinodynamic
planning.

We argue that our generated path retains much more
generality compared to curves generated by motion primi-
tives, because we are able to discretize the space randomly,
instead of having regular lattices. This method is much
more adaptive to various obstacle shapes, and since motion
primitives only allow certain paths to be taken between each
lattices, our paths have much more freedom to explore the
allowed space.

Curve primitive approaches that utilize sine functions or
splines often analytically guarantee optimality, but are often
costly to implement, especially in collision checking. Many
of the new methods based on splines utilize optimization
techniques [10,16], which is often hard to calculate in real-
time. In terms of quality of the path, however, these show
most accurate paths between the states.

Finally, the non-holonomic RRT method is also a good
competitor to this method. While the RRT with non-
holonomic constraints can be tractable, it can be hard and
inefficient to generally deal with parking problems that have
point-turns and cusps. The RRT is also not a probabilistically
complete method and doesn’t guarantee rate of convergence.

REFERENCES

[1] Jazar, R.N., ”Vehicle Dynamics: Theory and Application”, Springer,
1st ed. 2009, ISBN 978-0387742434

[2] Kavraki, L. E., Svestka, P., Latombe, J.-C., Overmars, M. H. (1996),
”Probabilistic roadmaps for path planning in high-dimensional config-
uration spaces”, IEEE Transactions on Robotics and Automation, 12
(4): 566580, doi:10.1109/70.508439.

[3] Geraerts, R., Overmars, M. H. (2002), ”A comparative study of
probabilistic roadmap planners”, Proc. Workshop on the Algorithmic
Foundations of Robotics (WAFR’02)

[4] Pivtoraiko, M., Kelly, A., Efficient constrained path planning via
search in state lattices, in International Symposium on Artificial
Intelligence, Robotics, and Automation in Space, 2005

[5] Pivtoraiko, M., Kelly, A., ”Kinodynamic Motion Planning with State
Lattice Motion Primitives”, 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems, San Francisco, Sep. 25-30, 2011

[6] Dubins, L.E., ”On Curves of Minimal Length with a Constraint on
AVerage Curvature, and with Prescribed Initial and Terminal Positions
and Tangents”, American Journal of Mathematics 79(3):497-516, July
1957

[7] Reeds, J.A., Shepp,L.A., ”Optimal Paths for a Car that Goes Both
Forwards and Backwards”, Pacific Journal of Math, 145(1990), pp.
367-353

[8] Murray, R.M., Sastry, S.S., ”Nonholonomic Motion Planning: Steering
Using Sinusoids”, IEEE Transactions on Automatic Control, Vol.38,
No.5, May 1993

[9] Gloderer, M., Hertle, A., ”Spline-Based Trajectory Optimization for
Autonomous Vehicles with Ackermann Drive”, 2010

[10] Zhao L., Zheng G., Li, J., ”Automatic Parking Path Optimization
Based on Bezier Curve Fitting”, Proceedings of the IEEE International
Coneference on Automation and Logistics, Zhengzhou, China, August
2012

[11] Chazelle, B., Dobkin, D.P., ”Optimal Convex Decompositions”, Com-
putational Geometry, Elseiver, pp.63-133, 1985

[12] Dijkstra,E.W., ”A note on two problems in connexion with graphs”,
Numerische Mathematik, 1: 269-271, 1959, doi:10.1007/BF01386390

[13] Hart, P.E., Nilsson, N.J., Raphale, B., ”A Formal Basis for the
Heuristic Determination of Minimum Cost PAths”, IEEE Transactions
on Systems Science and Cybernetics SSC4. 4(2):100-107, 1968,
doi:10.1109/TSSC.1968.300136

[14] LaValle, S.M., ”Planning Algorithms”, Cambridge University Press,
2006

[15] Bohlin, R., Kavraki, L., ”Path Planning Using Lazy PRM”, IEEE
International Conference on Robotics & Automation (ICRA), April
2000

[16] Chen, C., Rickert, M., Knoll, A., ”Path Planning with Orientation-
Aware Space Exploration Guided Heuristic Search for Autonomous
Parking and Maneuvering”, IEEE Intelligent Vehicles Symposium
(IV), 2015

8

	Introduction
	Non-holonomic Ackermann Model
	Motion Planning Method
	Vertex Generation: C-Space Sampling
	Edge Generation: Non-holonomic Model
	Shortest Path Search Algorithm

	Results
	C-space Sampling
	Holonomic Path Planner
	Non-Holonomic Path Planner

	Further Work & Discussion
	Resolution
	Random Sampling
	Tractability
	Comparison with other methods

	References

