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Abstract— Kalman filters have been used extensively for
platform localization, where the best working estimate of a
platform’s 3D position and orientation state must be calculated
from recursive sensor inputs. While state-of-art localization
methods such as GPS-inertial or visual-inertial have a good
degree of accuracy of this estimation, they suffer from a
low-sampling rate due to limitations in computation. We try
to deal with this problem by fast propagation of inertial
measurements, and a hierarchical structure of the Kalman
Filter. The experimentation platform is a UAV equipped with
two sensors: Qualcomm Snapdragon Flight, and the VectorNav
Inertial Measurement Unit (IMU). Snapdragon Flight is a
visual-inertial sensor platform that runs its internal Kalman
Filter, while the VectorNav IMU is a 9 DOF inertial sensor
that gives linear acceleration and angular velocity. We compare
the results of our implemented Kalman Filter with path from
Vicon Motion Capture-system, showing the validity of the filter
as well as its ability to accurately portray state estimations
within finer time intervals.

I. INTRODUCTION

Kalman Filters[1] and its variants have been used widely
for estimating the time-varying position and orientation of
a platform, which is a process known as localization. The
formulation of the filter usually involves fusing information
from multiple sensors with different information, such as
position and acceleration, orientation and angular velocity,
and et cetra. In the field of UAV localization, the state-of-art
methods are given by GPS-inertial, and visual-inertial. GPS-
inertial method fuses position data from GPS and accelera-
tion/angular velocity data from the inertial measurement unit
(IMU), while visual-inertial methods use visual features to
measure position to fuse with the IMU measurements.

While these methods are successful in achieving accurate
localization, both methods suffer from the problem of low
sampling rate. GPS-inertial localization has limitations in the
sampling rate of GPS (1-10Hz), while visual-inertial local-
ization suffers from limitations in computation time, usually
not being able to achieve over 30Hz. Such shortcomings
in sampling rate make both methods unsuitable for highly
dynamic flight, which requires frequent feedback for control.

This research proposes a solution to this problem of low
sampling rate by frequent propagation of IMU measure-
ments, and a hierarchical structure to the Kalman Filter that
helps in reducing computation time. This solution is tested
on a UAV sensor platform using Snapdragon Flight, a visual-
inertial localization sensor, and VectorNav IMU. The validity

of the implemented Kalman Filter is shown in the results
section.

II. PREVIOUS WORK

Real-time visual-inertial odometry in UAVs has not been
utilized until recently due to hardware limitations. The sam-
pling rate of sensor fusion is integral to a robust estimation
algorithm, but on-board computers with small form factors
were simply not efficient enough to carry out these compu-
tations in real-time.

The work by S. Weiss et al. [2] was one of the first
to provide a real-time on board solution for visual-inertial
geometry by using extended kalman filters on vision data and
inertial sensor. From here some papers have used different
techniques in order to create a more robust odometry out of
vision and inertial sensors.

As mentioned before, the key factor in integrating the
vision and inertial sensors together is undoubtedly the dif-
ferent sampling rates of two sensors - while IMU is able to
typically publish data typically in the order of 800-1000Hz,
most vision-based odometry requires a lot more computation
time and still stays in the order of 10Hz. These differing rates
inevitably affect the ability to estimate the states in real-
time. Along with the aforementioned problem of sampling
rates, such difference in frequency also leads to issues in
synchronization between the two sensors.

The work by Leutenegger et al. [3] propose a solution
by using nonlinear optimization on past keyframes instead
of filtering methods and are able to achieve good results.
In this paper the synchronization issue is handled by fitting
a Gaussian distribution between the IMU samples to infer
the IMU sample at the frame of the camera data. While
such optimization-based methods have the ability to be more
accurate, it introduces some complexities to the system both
in terms of processing speed and memory. Currently, utilizing
past state information seems to be a consensus between many
papers, Forster et al. [4] introduces a filtering-based method
that introduces one level of abstraction and preintegrating
IMU samples before they are filtered with the vision features.
Another work by M. Shelley [5] deals with this problem on
the vision side by triangulating the in-between frames and
calculating the residuals to fuse with the IMU. On the other
hand, Yang et al. [6] uses the extended Kalman Filter with
bias terms and incorporates the asynchronization issue within
the error term and continuously filters the new measurements.



III. KALMAN FILTER FORMULATION

A. System Dynamics

First, it is necessary to describe the system dynamics in
order to achieve the propagation step of the Kalman Filter.
Due to the nature of attitude dynamics, the system is non-
linear and we deal with a Extended Kalman Filter (EKF),
which is a variant of the Kalman Filter to deal with non-
linear systems. The state of the system is defined as

xxx = [pppNED
B , vvvB , bbbBa , qqq

NED
B , bbbBg ]T

where pppNED
B and qqqNED

B are respectively position and
quaternion-orientation of the body seen from NED (North-
East Down inertial frame), vvvB is the velocity of the body
seen from the body frame, and bbbBa and bbbBg are respectively
the accelerometer and gyroscope biases seen from the body.

Along with this state definition, we define the control
vector as inputs from the IMU, such that

uuu = [aaaB ,ωωωB ]T

With these definitions, the system dynamic is formulated as
a non-linear function of the state and control vectors.

dxxx

dt
= f(xxx,uuu) =

d

dt


pppNED
B

vvvB

bbbBa
qqqNED
B

bbbBg



=


R(qqqNED

B )vvvB

(aaaB − bbbBa ) − [ωωωB − bbbBg ]×vvv
B + RT (qqqNED

B )gggNED

03×103×103×1
1
2Ω(ωωωB − bbbBg )qqqNED

B

03×103×103×1


Here R(qqq) is the rotation matrix derived from the quaternion
(A.1), []× is the skew-symmetric matrix representation of
the cross product (A.2), and Ω is the matrix representation
of the Hamiltonian product between the quaternion and the
expanded angular velocity vector (A.3). We then propagate
the system dynamics recursively using Euler integration,
where the propagation matrix is defined by the Jacobian of
f(xxx,uuu) in regards to the state.

xxxk+1 = FFFxxxk FFF = III +
∂f

∂xxx
· ∆t

B. Attitude-Position Hierarchy

Observing the system dynamics, it can be seen that
the dynamics of the first three position states xxxp =
[pppNED

B .vvvB , bbbBa ]T and the latter two attitude states xxxq =
[qqqNED

B , bbbBg ]T can be decoupled. The first three states require
attitude and gyroscope bias information to achieve propa-
gation, but the latter two attitude states can be obtained
independent of the position values. Thus it is possible to
achieve a hierarchical structure where attitude information is
first estimated, then fed into the position variables. Thus we
describe a hierarchical decoupled structure using two filters
respectively describing position, and attitude.

The attitude filter can be first described with the system
dynamics of

dxxxq

dt
= fq(xxxq,ωωω

B) =

[
1
2Ω(ωωωB − bbbBg )qqqNED

B

0003×1

]
and the position filter is propagated by the dynamics of

dxxxp

dt
= fp(xxxp,xxxq, aaa

B ,ωωωB)

=

 R(qqqNED
B )vvvB

(aaaB − bbbBa ) − [ωωωB − bbbBg ]×vvv
B + RT (qqqNED

B )gggNED

03×103×103×1


Along with the dynamics propagation from IMU inputs,
the estimation step is done by measurement inputs from
Snapdragon Flight. The visual-inertial odometry device is
capable of measuring both position and orientation. Thus we
define the measurement vector and matrices by

zzzq = CCCqxxxq zzzp = CCCpxxxp

where the measurement matrices are defined as

CCCq = [III4×4,0004×3] CCCp = [III3×3,0003×6]

The rest of the process follows the EKF construction, where
QQQ is the covariance matrix of propagation (related to the
IMU), RRR the covariance of the estimation step (related to
Snapdragon Flight). We describe the tuning procedures of
these parameters in the later section. The rest of the estimated
process is done by computing the Kalman Gain (A.4)

We prove that this hierarchical structure is more com-
putationally efficient compared to propagating the whole
state due to the non-linear nature of this Kalman Gain
computation, which is computed using matrix inversion.
Denoting the Kalman gain as KKK, we see from appendix A.4
that

KKKk = PPP k|k−1CCC
T
k (CCCkPPP k|k−1CCC

T
k +RRRk)−1

This process of obtaining inversion can be done by
Gaussian-Jordan elimination, but matrix factorization (de-
composition) is usually utilized to speed up the process.
Although the computational complexity of this factorization
process is dependent upon matrix types, the fastest com-
plexity is around O(n2.376) using the Coppersmith-Winograd
(CW) algorithm [7]. The CW algorithm is also the fastest for
matrix multiplication. Then denoting the number of position
states as np and the number of orientation states as nq , we see
that in non-asymptotic terms, most computations are much
faster by

(np + nq)2.376 ≥ n2.376
p + n2.376

q

In our configuration of np = 9 and nq = 7, we can
calculate a 60.49% decrease in computation time. For cubic
complexity (O(n3)) the reduction reaches 73.83%.



C. Frequent Propagation

To deal with the aforementioned problem of low sampling
rate, we propagate as soon as the IMU data becomes avail-
able, and estimate as soon as Snapdragon Flight’s data is
available. The IMU is capable of publishing data at 800Hz,
while Snapdragon Flight publishes at 30Hz. This results in
multiple propagation steps in between the estimation steps.
Thus denoting x̂k+i|k as the (k + i)th propagation step after
the kth estimation step, we change the propagation step by

x̂xxk−i|k−n = f(x̂xxk−i−1|k−n, ûuuk−i−1)

where n is the number of propagation steps in between
estimations, and n ≥ i. Figure 1 Summarizes the overall
construction of the filter using hierarchical structure and
frequent propagation.

Fig. 1. Summary of the Extended Kalman Filter with Hierarchical structure
and Frequent Propagation

D. Observability Analysis

We finally note that the system is observable since there
are direct position and orientation measurements, from which
velocity and both bias terms are observable. To see that this is
true, we use the former definitions of the discrete propagation
matrix FFF and the measurement matrix CCC, that are defined
such that

xxxk+1 = FFFxxxk zzzk = CCCxxxk

We note that the discrete propagation matrices and the
measurement matrix each differ for the attitude and position
filters (FFF q ,CCCq and FFF p,CCCp). For both filters we construct the

observability matrix OOOq and OOOp such that

OOOq =


CCCq

CCCqFFF q

CCCq(FFF q)2

...
CCCq(FFF q)6

 OOOp =


CCCp

CCCpFFF p

CCCp(FFF p)2

...
CCCp(FFF p)8


Here we use the fact that the number of states for each filters
are nq = 7 and np = 9. By determining the rank of the
matrix we confirm that

rank(OOOq) = nq = 7 rank(OOOp) = np = 9

from which it can be concluded that both states in the filters
are always observable.

IV. PLATFORM SPECIFICATION

We test our Kalman Filter on a UAV platform custom-
built by Skylift Global. The platform is capable of high-
velocity flight (over 60mph) and has computational power
needed for various tasks such as Simultaneous Localization
and Mapping (SLAM) and Fast Motion Planning (FMP).

Qualcomm Snapdragon Flight was later added to the the
UAV as a part of SURF, during which many additional hard-
ware preparations were done. Snapdragon Flight is one of the
first commercialized visual-inertial solution to localization.
Since the product is still early in release, we came across
some hardware and firmware issues such as board’s vibration
damping. Since the sensor is relatively new in the market,
this research is one of the few to utilize this sensor as a part
of the localization stack.

Fig. 2. Experimentation Platform Specification

The platform’s overall hardware specification is given in
Figure 2, and Figure 3 illustrates a photo of the platform. Fig-
ure 4 describes additional hardware work, and Snapdragon
Flight.

V. FILTER TUNING & INITIALIZATION

Another important perspective of implementing a Kalman
Filter lies in tuning the filter. Although many variables
are given as output parameters of the sensor, some are
characteristics of the sensor that has to be tuned or measured
in order to achieve a reliable filtering process.



Fig. 3. UAV Sensor Platform with TX1 Processor

Fig. 4. 1. Hardware mount for Snapdragon 2. Qualcomm Snapdragon
Flight

A. Bias Initialization

Although the biases are observable in the system (i.e.
the filter will automatically estimate the bias terms), it is
important to have a priori knowledge of the biases to achieve
a good propagation step during the first few seconds of the
filter. In a well-designed filter the bias terms can be simply
calculated by the filter output, and may be initialized with
that value. The attitude filter’s bias can be directly observed
by propagating when the gyroscope bias term is zero.

Fig. 5. Attitude Propagation in ZYX-Euler angles without the bias term.
Magenta highlights the linear offset caused by a gyroscope bias term.

Figure 5 describes propagation of angular velocity mea-
surements with zero bias term. Calculating the slope of
this linearly increasing offset gives us a good initialization
process for the gyroscope bias term. With these values,
propagation alone achieves the result of Figure 6.

Fig. 6. Attitude Propagation in ZYX-Euler angles with a properly initialized
bias terms.

In the position filter, the constant accelerometer bias is
integrated twice to give a quadratic function. The process
is, however, less evident to observe compared to the attitude
filter because the centripetal term also builds up this bias.
Thus while it is possible to initialize the bias based on a
quadratic fit, we chose to initialize it by choosing what the
filter values converge to.

B. Covariance Tuning

Determining the value of the covariance matrices QQQk and
RRRk is integral to the performance of the filter, as they
provide stochastic representations of how much to trust the
sensors. This process is usually done empirically depending
on the accuracy of the sensors, and we extracted data from
experiments for values of QQQk and RRRk. For the discrete
formulation of these covariance matrices, we first define
constant matrices QQQ and RRR and update the covariances using
the time-dependent form:

QQQk = QQQ · ∆t RRRk = RRR/∆t

In order to obtain values of QQQ and RRR, we can obtain
the values of the stochastic variables wk and vk. wk, the
propagation noise, is obtained by subtracting the value of
propagation from ground-truth obtained using Vicon. vk, the
measurement noise, is obtained by subtracting the sensor
measurement from ground-truth obtained using Vicon. The
graph of these noises are described in Figure 7.

Fig. 7. Graph of measured stochastic variables wwwk and vvvk in the attitude
filter



After obtaining these values, covariance is calculated from
the time samples and accordingly tuned to the values of QQQ
and RRR.

VI. RESULTS

For experimentation, we collect data from Snapdragon
Flight, VectorNav IMU, and the Vicon Motion Capture
System to compare the results of each sensor against the
implemented Kalman Filter.

A. Results of the attitude filter

The result of the attitude filter is shown in ZYX-Euler
angles in Figure 8.

Fig. 8. Attitude filter result in ZYX-Euler Angles

We can observe that the implemented Kalman Filter
agrees well with the results of VectorNav’s internal filter,
even though the filter was run on IMU’s uncompensated
(unfiltered) data. Unfortunately at this stage Vicon suffers
from experimental conditions (marker obstruction) but the
overall filter works well to describe orientation.

B. Results on Position

While orientation goes through a single integration step
for propagation (angular velocity to quaternions), position
must go through two integration steps before position can
be recovered from acceleration. For this reason, The result
of the position filter is shown in Figure 9.

Fig. 9. XY-position filter result

We can see that after some time period, the bias terms are
correctly compensated for and the Kalman Filter provides
valid results within finer intervals against the Vicon motion
capture system.

VII. CONCLUSION

To deal with the low-frequency nature of GPS and visual-
inertial localization, we present a solution using position-
attitude hierarchy and frequent propagation. We asymptoti-
cally prove that the former method reduces computation time
by 60.49%, and show that the new filter can achieve IMU’s
sampling rate while providing valid estimations between each
sensor measurements. This not only provides localization
results within finer time intervals, but also helps in achieving
faster feedback rates for control of highly dynamic aerial
robots.

We then tested the filter on a UAV platform equipped with
a visual-inertial sensor of Snapdragon Flight, which provides
position and orientation measurement, and VectorNav IMU,
which provides acceleration and angular velocity measure-
ment. The results show that the implemented filter is valid
against the Vicon motion capture system, with high sampling
rates.

It is notable that the same method of frequent propagation
can be utilized for most formulations of the Kalman Filter
involving a propagation step, and a measurement (estimation)
step. This process will always help achieve more estimations
within finer intervals in scenarios where the two steps have
drastically different sampling rates. In contrast, the attitude-
hierarchy will not be usable for systems that do not have
direct orientation measurements, such as GPS-inertial. Most
IMUs, however, come with magnetometers that provide this
measurement. In this case the whole attitude filter runs at a
much faster sampling rate compared to the position filter.
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APPENDIX

1. Rotation Matrix derived from Quaternion

From a quaternion qqq = [qw, qx, qy, qz], we derive the
rotation matrix R(qqq) by

R(qqq) =

1 − 2q2y − 2q2z 2qxqy − 2qzqw 2qxqz + 2qyqw
2qxqy + 2qzqw 1 − 2q2x − 2q2z 2qyqz − 2qxqw
2qxqz − 2qyqw 2qyqz + 2qxqw 1 − 2q2x − 2q2y


2. Skew-symmetric Matrix Representation of Cross Product

From a vector vvv = [vx, vy, vz]T and www = [wx, wy, wz]T ,
we recover the cross product vvv × www by using a skew-
symmetric representation of vvv×, such that

vvv ×www = [vvv]×www =

 0 −vz vy
vz 0 −vx
−vy vx 0

wx

wy

wz


3. Derivative of Quaternion

We define the derivative of a quaternion by a matrix repre-
sentation of the Hamiltonian product between the quaternion
and the expanded angular velocity vector, such that ωωωq =
[0, wx, wy, wz] and

dqqq

dt
=

1

2
ωωω ⊗ qqq =

1

2
Ω(ωωω)qqq =

1

2

[
−[ωωω]× ωωω
−(ωωω)T 0

]
qqq

4. Extended Kalman Filter (EKF)

We expand more on the Extended Kalman Filter (EKF)
formulation for notation clarification and further explanation.
As mentioned in section 3, upon defining the dynamics in
terms of the derivative, the recursive notation is such that

dxxx

dt
= f(xxx,uuu)

xxxk+1 = xxxk + f(xxxk,uuuk) · ∆t +wwwk

where wwwk is the stochastic Gaussian noise associated with
propagation. While the system dynamic is non-linear, the
measurement matrix is not and we define a measurement
vector zzzk such that

zzzk = CCCxxxk + vvvk

where vvvk is the stochastic Gaussian variable related to sensor
noise. Then we carry out the prediction steps by

xxxk+1|k = xxxk|k + f(xxxk,uuuk) · ∆t

PPP k+1|k = FFF kPPP k|kFFF
T
k +QQQk

where QQQk is the covariance matrix of wwwk, and F is the
discrete Jacobian such that

FFF = III +
∂f

∂xxx
× ∆t

The sensor measurements are updated such that

ȳyyk+1 = zzzk+1 −CCCxxxk+1|k

KKKk+1 = PPP k+1|kHHH
T
k+1(CCCk+1PPP k+1|kCCC

T
k +RRRk+1)−1

x̂̂x̂xk+1|k+1 = x̂̂x̂xk+1|k +KKKk+1ȳ̄ȳyk+1

PPP k+1|k+1 = (III −KKKkCCCk)PPP k+1|k

where KKK is the near-optimal Kalman Gain for this step, and
RRRk is the covariance matrix related to the sensor stochastic
variable vvvk.


